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Representation of Signals

Deterministic Signals

x1(t) = A cosω0(t)
x2(t) = A sinω0(t)

We are interested in expressing these signals in terms of a set of orthonormal basis functions, i.e.

x(t) =
∞∑

i=1

xiφi(t)

{φi(t)} are the orthonormal basis functions.

< φi, φj >︸ ︷︷ ︸
Inner product

,
∫

T
φi(t)φ∗j (t)dt

= δij

=
{

1 ; i = j (implies power is normalized to 1)
0 ; i 6= j (implies orthogonality)

The main purpose of representing signals via a linear combination of orthogonal signals is that they can be easily
added with and subtracted from each other as in vector operations.
The coefficients xi’s are the ”projections” of x(t) into φi(t)s.

< x, φj > = projection of x(t) onto φj(t)

=
∫

T
x(t)φ∗j (t)dt

=
∫

T

∑
i xiφi(t)φ∗j (t)dt

=
∑

xi

∫
T

φi(t)φ∗j (t)dt︸ ︷︷ ︸
=δij

=
∑∞

i=1 xiδij

= xj

⇒ xj =< x, φj >

e.g. If x(t) is a periodic signal with period T , then

φn(t) =
1√
T

exp(jnω0t)



where ω0 = 2π
T , x(t) =

∑∞
n=−∞ xnφn(t) and xn = 1√

T

∫
T

x(t) exp(jnω0t)dt. Energy of x(t):

Ex =
∫

T
|x(t)|2dt

=
∫

T
x(t)x∗(t)dt

=
∫

T

∑
n xnφn(t)

∑
m x∗mφ∗m(t)dt

=
∑

n

∑
m xnx∗m

∫

T

φn(t)φ∗m(t)dt

︸ ︷︷ ︸
δmn

⇒ Ex =
∑

n |xn|2 =
∫

T
|x(t)|dt

This is known as the Parseval’s theorem.
If x(t) is approximately represented via a finite sum:

x(t) ≈ xN (t)

where

xN (t) =
N∑

n=1

xnφn(t)

then, EXN =
∑N

n=1 |xn|2 ≤ Ex =
∑∞

n=1 |xn|2.
If {φi(t)} is such that the energy goes to zero as N →∞, i.e.

lim
N→∞

(Ex − ExN
) = 0

then {φi(t)} is said to be a Complete OrthoNormal (CON) set.
e.g.: The harmonics φn(t) = 1√

T
exp(jnω0t) where t ∈ [0, T ] and n = 0,±1,±2, ...±∞, form a CON set.

Evaluation of xi

Evaluation of xi using the correlator and matched filter are shown in figures 1 and 2, respectively.
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Figure 1. Correlator implementation
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Figure 2. Matched filter implementation

Correlation of two signals
Correlation between two signals is defined via:

ρxy =
Exy√
ExEy

=
< x, y >√

< x, x >< y, y >

where
Exy =< y, x >

=
∫

T

∑
ynφn(t).

∑
x∗mφ∗m(t)dt

=
∑

n,m ynx∗m
∫

T
φn(t)φ∗m(t)dt

=
∑

n,m ynx∗mδmn

⇒ Exy =
∑

n ynx∗n

Gram Schimdt Procedure
Given a set of M signals si(t), i = 1, 2, ..., M
We are interested in finding a set of orthonormal basis functions φi(t), i = 1, 2, ..., N ≤ M
that span the linear signal subspace of si(t), i.e.
if

p(t) =
M∑

i=1

αisi(t)

where αi’s are constants, then

p(t) =
N∑

i=1

piφi(t)

where
pi =< p, φi >

However, in general
αi 6=< p, si >

A procedure for constructing the φi(t)’s, called the Gram Schmidt Proceudre, is described next.

Algorithm:



1. Let
ψ1(t) , s1(t)

and
Eψ1 =< ψ1, ψ1 >

Define

φ1(t) =
ψ1(t)√

Eψ1

Note that < φ1, φ1 >= Eφ1 = 1.

2. Let
ψ2(t) = s2(t)− < s2, φ1 > φ1(t)︸ ︷︷ ︸

projection of s2(t) on to φ1(t)

Note that:
< ψ2, φ1 > =< s2, φ1 > −< s2, φ1 >︸ ︷︷ ︸

constant

< φ1, φ1 >

=< s2, φ1 > − < s2, φ1 >

= 0

i.e ψ2 ⊥ φ1. Again define:

φ2(t) =
ψ2(t)√

Eψ2

Note that < φ2, φ1 >= 0.

3. Let
ψ3(t) = s3(t)− < s3, φ1 > φ1(t)− < s3, φ2 > φ2(t)

= s3(t)−
∑2

i=1 < s3, φi > φi(t)

Define

φ3(t) =
ψ3(t)√

Eψ3

Note that < φ3, φi >= 0 for i = 1, 2. i.e. φ3 ⊥ φi.

4. Continuing like this for k steps we get:

ψk(t) = sk(t)−
k−1∑

i=1

< sk, φi > φi(t)

and

φk(t) =
ψk(t)√

Eψk

where < φk, φi >= 0 for i = 1, 2, ..., k − 1. i.e. φk ⊥ φi.

This procedure is repeated with all sk(t)’s that yield a non-zero residual i.e. ψk(t). If the residual is zero then
just skip that sk(t). This implies that sk(t) is linearly dependent on si(t), for i = 1, 2, ..., k − 1.

Outcome: A set of orthonormal basis functions Φ = {φi(t); i = 1, 2, ..., N ≤ M}
Matrix representation:

~s(t) =




s1(t)
s2(t)

...
sN (t)




~φ(t) =




φ1(t)
φ2(t)

...
φN (t)






~A =




< s1, φ1 > 0 0 · · · 0
< s2, φ1 > < s2, φ2 > 0 · · · 0

...
. . . 0

...
. . .

...
< sN , φ1 > · · · < sN , φN >




~S(t) = ~A~φ(t)

Example:
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Figure 3. Example

1. Begin by:
ψ1(t) = s1(t)

Eψ1 = 2

2. Compute

< s1, φ1 >=
∫ 3

0

s2(t)
s1(t)√

2
dt =

−1
2

ψ2(t) = s2(t)−
(−1√

2

)
s1(t)√

2
= s2(t) +

s1(t)
2

Eψ2(t) =
3
2
⇒ φ2(t) =

√
2
3

[
s2(t) +

s1(t)
2

]

3. By observation, we can write that

s3(t) = 2s1(t) + s2(t)

=
[
s2(t) + s1(t)

2

]
+ 3

2s1(t)

= ψ2(t) + 3
2ψ1(t)

=
√

3
2φ2(t) + 3

√
2

2 φ1(t)



Hence two basis functions are sufficient.

Summary:

s1(t) =
√

2φ1(t)

s2(t) = − 1
2φ1(t) +

√
3
2φ2(t)

s3(t) = 3√
2
φ1(t) +

√
3
2φ2(t)

~A =




√
2 0

− 1
2

√
3
2

3√
2

√
3
2



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Figure 4.

Some common signal sets

1. Antipodal signals
s1(t) = −s2(t)

i.e. 180◦ out of phase with each other.

Es =< s1, s1 >=< s2, s2 >

Metric distance
d , 2

√
Es

s1(t) =
√

Esφ1(t)

s2(t) = −
√

Esφ2(t)



e.g.
s1(t) = A cos(ω0t)
s2(t) = −A cos(ω0t)

where 0 ≤ t ≤ T

⇒ φ1(t) =
√

2
T cos(ω0t)

Es = A2T
2

This corresponds to antipodal ASK signaling or BPSK.

2. Orthogonal signals
< s1, s2 >= 0

e.g.
s1(t) = cos(ω0t)
s2(t) = sin(ω0t)

where 0 ≤ t ≤ T . Therefore,

φ1(t) =
√

2
T cos(ω0t)

φ2(t) =
√

2
T sin(ω0t)

e.g. PSK where the two phases are 90◦ out of phase with each other.

Random signals

Series representation of random signals is called the Karhunen Loeve (KL) transform.
Let {φ)i(t); i = 1, 2, ...,∞} be a set of orthonormal (deterministic) basis functions.
Consider any sample function x(t) of a random process and express it in terms of {φi(t)} where t ∈ [0, T ].

x(t) =
∞∑

i=1

xiφi(t)

The coefficients xi’s are random variables. For simplicity, we assume E(xi) = 0.
We are interested in selecting {φi(t)} such that xi’s are uncorrelated/orthogonal.

E[(xi − x̄i)(xj − x̄j
∗)] = E(xix

∗
j ) =

{
σ2

i ; i = j
0 ; i 6= j

= σ2
i δij

Consider the KL representation:

x(t) =
∞∑

i=1

xiφi(t)

We multiply both sides by with x∗j

x∗jx(t) = x∗j

∞∑

i=1

xiφi(t)

Take expectation on both sides

E[x∗jx(t)] =
∞∑

i=1

E[xix
∗
j ]φi(t) (1)



We showed earlier that the coefficients of orthonormal expansion of a signal are obtained via:

xj =
∫

T
x(u)φ∗j (u)du

x∗j =
∫

T
x ∗ (u)φj(u)du

(2)

Substitute 2 in 1 to yield:

E[
∫

T

x∗(u)φj(u)dux(t)] =
∞∑

i=1

E(xix
∗
j )φi(t)

We wish to impose the following condition on the above equation:

E(xix
∗
j ) = λiδij

This yields: ∫
T

E
[
x(t)x∗(u)

]
φj(u)du = λjφj(t)

∫
T

Rx(t, u)φj(u)du = λjφj(t)

This equation is the solution for:

eigenfunctions : φj(t) j = 1, 2, ...
eigenvalues : λj j = 1, 2, ...

for the autocorrelation function.

Thus, to represent a stochastic process via a linear combination of orthonormal basis functions with orthogonal
coefficients, the basis functions should be chosen to be the eigen functions of the autocorrelation of the random
signal. The variance of the ith coefficient σ2

i is the ith eigenvalue λ2
i of the autocorrelation function.

The eigenfunction domain is the generalized spectral domain for the stochastic process. The generalized spec-
tral representation provides a signal processing framework to analyze/address various detection and estimation
problems.


