EE 631: Estimation and Detection Part 6

Dr. Mehrdad Soumekh

Representation of Signals

Deterministic Signals

$$
\begin{aligned}
& x_{1}(t)=A \cos \omega_{0}(t) \\
& x_{2}(t)=A \sin \omega_{0}(t)
\end{aligned}
$$

We are interested in expressing these signals in terms of a set of orthonormal basis functions, i.e.

$$
x(t)=\sum_{i=1}^{\infty} x_{i} \phi_{i}(t)
$$

$\left\{\phi_{i}(t)\right\}$ are the orthonormal basis functions.

$$
\underbrace{\left\langle\phi_{i}, \phi_{j}\right\rangle} \triangleq \int_{T} \phi_{i}(t) \phi_{j}^{*}(t) d t
$$

Inner product

$$
\begin{aligned}
& =\delta_{i j} \\
& =\left\{\begin{array}{lll}
1 & ; i=j \\
0 & ; i \neq j & \text { (implies power is normalized to 1) } \\
\text { (implies orthogonality) }
\end{array}\right.
\end{aligned}
$$

The main purpose of representing signals via a linear combination of orthogonal signals is that they can be easily added with and subtracted from each other as in vector operations.
The coefficients x_{i} 's are the "projections" of $x(t)$ into $\phi_{i}(t) \mathrm{s}$.

$$
\begin{aligned}
<x, \phi_{j}> & =\text { projection of } x(t) \text { onto } \phi_{j}(t) \\
& =\int_{T} x(t) \phi_{j}^{*}(t) d t \\
& =\int_{T} \sum_{i} x_{i} \phi_{i}(t) \phi_{j}^{*}(t) d t \\
& =\sum x_{i} \int_{T} \underbrace{\phi_{i}(t) \phi_{j}^{*}(t) d t}_{=\delta_{i j}} \\
& =\sum_{i=1}^{\infty} x_{i} \delta_{i j} \\
& =x_{j} \\
\Rightarrow x_{j} & =<x, \phi_{j}>
\end{aligned}
$$

e.g. If $x(t)$ is a periodic signal with period T, then

$$
\phi_{n}(t)=\frac{1}{\sqrt{T}} \exp \left(j n \omega_{0} t\right)
$$

where $\omega_{0}=\frac{2 \pi}{T}, x(t)=\sum_{n=-\infty}^{\infty} x_{n} \phi_{n}(t)$ and $x_{n}=\frac{1}{\sqrt{T}} \int_{T} x(t) \exp \left(j n \omega_{0} t\right) d t$. Energy of $x(t)$:

$$
\begin{aligned}
E_{x} & =\int_{T}|x(t)|^{2} d t \\
& =\int_{T} x(t) x^{*}(t) d t \\
& =\int_{T} \sum_{n} x_{n} \phi_{n}(t) \sum_{m} x_{m}^{*} \phi_{m}^{*}(t) d t \\
& =\sum_{n} \sum_{m} x_{n} x_{m}^{*} \underbrace{\int_{T} \phi_{n}(t) \phi_{m}^{*}(t) d t}_{\delta_{m n}} \\
\Rightarrow E_{x} & =\sum_{n}\left|x_{n}\right|^{2}=\int_{T}|x(t)| d t
\end{aligned}
$$

This is known as the Parseval's theorem.
If $x(t)$ is approximately represented via a finite sum:

$$
x(t) \approx x_{N}(t)
$$

where

$$
x_{N}(t)=\sum_{n=1}^{N} x_{n} \phi_{n}(t)
$$

then, $E_{X_{N}}=\sum_{n=1}^{N}\left|x_{n}\right|^{2} \leq E_{x}=\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}$.
If $\left\{\phi_{i}(t)\right\}$ is such that the energy goes to zero as $N \rightarrow \infty$, i.e.

$$
\lim _{N \rightarrow \infty}\left(E_{x}-E_{x_{N}}\right)=0
$$

then $\left\{\phi_{i}(t)\right\}$ is said to be a Complete $\underline{\text { Orthonormal (CON) set. }}$
e.g.: The harmonics $\phi_{n}(t)=\frac{1}{\sqrt{T}} \exp \left(j n \omega_{0} t\right)$ where $t \in[0, T]$ and $n=0, \pm 1, \pm 2, \ldots \pm \infty$, form a CON set.

Evaluation of x_{i}
$\overline{\text { Evaluation of } x_{i}}$ using the correlator and matched filter are shown in figures 1 and 2, respectively.

Figure 1. Correlator implementation

Figure 2. Matched filter implementation

Correlation of two signals
Correlation between two signals is defined via:

$$
\rho_{x y}=\frac{E_{x y}}{\sqrt{E_{x} E_{y}}}=\frac{<x, y>}{\sqrt{<x, x><y, y>}}
$$

where

$$
\begin{aligned}
E_{x y} & =<y, x> \\
& =\int_{T} \sum y_{n} \phi_{n}(t) \cdot \sum x_{m}^{*} \phi_{m}^{*}(t) d t \\
& =\sum_{n, m} y_{n} x_{m}^{*} \int_{T} \phi_{n}(t) \phi_{m}^{*}(t) d t \\
& =\sum_{n, m} y_{n} x_{m}^{*} \delta_{m n} \\
\Rightarrow E_{x y} & =\sum_{n} y_{n} x_{n}^{*}
\end{aligned}
$$

Gram Schimdt Procedure
Given a set of M signals $s_{i}(t), i=1,2, \ldots, M$
We are interested in finding a set of orthonormal basis functions $\phi_{i}(t), i=1,2, \ldots, N \leq M$ that span the linear signal subspace of $s_{i}(t)$, i.e.
if

$$
p(t)=\sum_{i=1}^{M} \alpha_{i} s_{i}(t)
$$

where α_{i} 's are constants, then

$$
p(t)=\sum_{i=1}^{N} p_{i} \phi_{i}(t)
$$

where

$$
p_{i}=<p, \phi_{i}>
$$

However, in general

$$
\alpha_{i} \neq<p, s_{i}>
$$

A procedure for constructing the $\phi_{i}(t)$'s, called the Gram Schmidt Proceudre, is described next.
Algorithm:

1. Let

$$
\psi_{1}(t) \triangleq s_{1}(t)
$$

and

$$
E_{\psi_{1}}=<\psi_{1}, \psi_{1}>
$$

Define

$$
\phi_{1}(t)=\frac{\psi_{1}(t)}{\sqrt{E_{\psi_{1}}}}
$$

Note that $<\phi_{1}, \phi_{1}>=E_{\phi_{1}}=1$.
2. Let

$$
\psi_{2}(t)=s_{2}(t)-\underbrace{<s_{2}, \phi_{1}>\phi_{1}(t)}_{\text {projection of } s_{2}(t) \text { on to } \phi_{1}(t)}
$$

Note that:

$$
\begin{aligned}
<\psi_{2}, \phi_{1}> & =<s_{2}, \phi_{1}>-\underbrace{<s_{2}, \phi_{1}>}_{\text {constant }}<\phi_{1}, \phi_{1}> \\
& =<s_{2}, \phi_{1}>-<s_{2}, \phi_{1}> \\
& =0
\end{aligned}
$$

i.e $\psi_{2} \perp \phi_{1}$. Again define:

$$
\phi_{2}(t)=\frac{\psi_{2}(t)}{\sqrt{E_{\psi_{2}}}}
$$

Note that $<\phi_{2}, \phi_{1}>=0$.
3. Let

$$
\begin{aligned}
\psi_{3}(t) & =s_{3}(t)-<s_{3}, \phi_{1}>\phi_{1}(t)-<s_{3}, \phi_{2}>\phi_{2}(t) \\
& =s_{3}(t)-\sum_{i=1}^{2}<s_{3}, \phi_{i}>\phi_{i}(t)
\end{aligned}
$$

Define

$$
\phi_{3}(t)=\frac{\psi_{3}(t)}{\sqrt{E_{\psi_{3}}}}
$$

Note that $<\phi_{3}, \phi_{i}>=0$ for $i=1,2$. i.e. $\phi_{3} \perp \phi_{i}$.
4. Continuing like this for k steps we get:

$$
\psi_{k}(t)=s_{k}(t)-\sum_{i=1}^{k-1}<s_{k}, \phi_{i}>\phi_{i}(t)
$$

and

$$
\phi_{k}(t)=\frac{\psi_{k}(t)}{\sqrt{E_{\psi_{k}}}}
$$

where $<\phi_{k}, \phi_{i}>=0$ for $i=1,2, \ldots, k-1$. i.e. $\phi_{k} \perp \phi_{i}$.
This procedure is repeated with all $s_{k}(t)$'s that yield a non-zero residual i.e. $\psi_{k}(t)$. If the residual is zero then just skip that $s_{k}(t)$. This implies that $s_{k}(t)$ is linearly dependent on $s_{i}(t)$, for $i=1,2, \ldots, k-1$.
Outcome: A set of orthonormal basis functions $\Phi=\left\{\phi_{i}(t) ; i=1,2, \ldots, N \leq M\right\}$
Matrix representation:

$$
\vec{s}(t)=\left[\begin{array}{c}
s_{1}(t) \\
s_{2}(t) \\
\vdots \\
s_{N}(t)
\end{array}\right] \quad \vec{\phi}(t)=\left[\begin{array}{c}
\phi_{1}(t) \\
\phi_{2}(t) \\
\vdots \\
\phi_{N}(t)
\end{array}\right]
$$

$$
\begin{gathered}
\vec{A}=\left[\begin{array}{ccccc}
<s_{1}, \phi_{1}> & 0 & 0 & \cdots & 0 \\
<s_{2}, \phi_{1}> & <s_{2}, \phi_{2}> & 0 & \cdots & 0 \\
\vdots & & \ddots & & 0 \\
\vdots & & & \ddots & \vdots \\
<s_{N}, \phi_{1}> & & \cdots & & <s_{N}, \phi_{N}>
\end{array}\right] \\
\\
\\
\\
\\
\end{gathered}
$$

Example:

Figure 3. Example

1. Begin by:

$$
\begin{gathered}
\psi_{1}(t)=s_{1}(t) \\
E_{\psi_{1}}=2
\end{gathered}
$$

2. Compute

$$
\begin{gathered}
<s_{1}, \phi_{1}>=\int_{0}^{3} s_{2}(t) \frac{s_{1}(t)}{\sqrt{2}} d t=\frac{-1}{2} \\
\psi_{2}(t)=s_{2}(t)-\left(\frac{-1}{\sqrt{2}}\right) \frac{s_{1}(t)}{\sqrt{2}}=s_{2}(t)+\frac{s_{1}(t)}{2} \\
E_{\psi_{2}}(t)=\frac{3}{2} \Rightarrow \phi_{2}(t)=\sqrt{\frac{2}{3}}\left[s_{2}(t)+\frac{s_{1}(t)}{2}\right]
\end{gathered}
$$

3. By observation, we can write that

$$
\begin{aligned}
s_{3}(t) & =2 s_{1}(t)+s_{2}(t) \\
& =\left[s_{2}(t)+\frac{s_{1}(t)}{2}\right]+\frac{3}{2} s_{1}(t) \\
& =\psi_{2}(t)+\frac{3}{2} \psi_{1}(t) \\
& =\sqrt{\frac{3}{2}} \phi_{2}(t)+\frac{3 \sqrt{2}}{2} \phi_{1}(t)
\end{aligned}
$$

Hence two basis functions are sufficient.

Summary:

$$
\begin{aligned}
s_{1}(t) & =\sqrt{2} \phi_{1}(t) \\
s_{2}(t) & =-\frac{1}{2} \phi_{1}(t)+\sqrt{\frac{3}{2}} \phi_{2}(t) \\
s_{3}(t) & =\frac{3}{\sqrt{2}} \phi_{1}(t)+\sqrt{\frac{3}{2}} \phi_{2}(t) \\
\vec{A} & =\left[\begin{array}{cc}
\sqrt{2} & 0 \\
-\frac{1}{2} & \sqrt{\frac{3}{2}} \\
\frac{3}{\sqrt{2}} & \sqrt{\frac{3}{2}}
\end{array}\right]
\end{aligned}
$$

Figure 4.

Some common signal sets

1. Antipodal signals

$$
s_{1}(t)=-s_{2}(t)
$$

i.e. 180° out of phase with each other.

$$
E_{s}=<s_{1}, s_{1}>=<s_{2}, s_{2}>
$$

Metric distance

$$
\begin{aligned}
d & \triangleq 2 \sqrt{E_{s}} \\
s_{1}(t) & =\sqrt{E_{s}} \phi_{1}(t) \\
s_{2}(t) & =-\sqrt{E_{s}} \phi_{2}(t)
\end{aligned}
$$

e.g.

$$
\begin{aligned}
& s_{1}(t)=A \cos \left(\omega_{0} t\right) \\
& s_{2}(t)=-A \cos \left(\omega_{0} t\right)
\end{aligned}
$$

where $0 \leq t \leq T$

$$
\begin{aligned}
\Rightarrow \phi_{1}(t) & =\sqrt{\frac{2}{T}} \cos \left(\omega_{0} t\right) \\
E_{s} & =\frac{A^{2} T}{2}
\end{aligned}
$$

This corresponds to antipodal ASK signaling or BPSK.
2. Orthogonal signals

$$
<s_{1}, s_{2}>=0
$$

e.g.

$$
\begin{aligned}
& s_{1}(t)=\cos \left(\omega_{0} t\right) \\
& s_{2}(t)=\sin \left(\omega_{0} t\right)
\end{aligned}
$$

where $0 \leq t \leq T$. Therefore,

$$
\begin{aligned}
& \phi_{1}(t)=\sqrt{\frac{2}{T}} \cos \left(\omega_{0} t\right) \\
& \phi_{2}(t)=\sqrt{\frac{2}{T}} \sin \left(\omega_{0} t\right)
\end{aligned}
$$

e.g. PSK where the two phases are 90° out of phase with each other.

Random signals

Series representation of random signals is called the Karhunen Loeve (KL) transform.
Let $\{\phi) i(t) ; i=1,2, \ldots, \infty\}$ be a set of orthonormal (deterministic) basis functions.
Consider any sample function $x(t)$ of a random process and express it in terms of $\left\{\phi_{i}(t)\right\}$ where $t \in[0, T]$.

$$
x(t)=\sum_{i=1}^{\infty} x_{i} \phi_{i}(t)
$$

The coefficients x_{i} 's are random variables. For simplicity, we assume $E\left(x_{i}\right)=0$.
We are interested in selecting $\left\{\phi_{i}(t)\right\}$ such that x_{i} 's are uncorrelated/orthogonal.

$$
\begin{aligned}
E\left[\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-{\overline{x_{j}}}^{*}\right)\right] & =E\left(x_{i} x_{j}^{*}\right)= \begin{cases}\sigma_{i}^{2} & ; i=j \\
0 & ; i \neq j\end{cases} \\
& =\sigma_{i}^{2} \delta_{i j}
\end{aligned}
$$

Consider the KL representation:

$$
x(t)=\sum_{i=1}^{\infty} x_{i} \phi_{i}(t)
$$

We multiply both sides by with x_{j}^{*}

$$
x_{j}^{*} x(t)=x_{j}^{*} \sum_{i=1}^{\infty} x_{i} \phi_{i}(t)
$$

Take expectation on both sides

$$
\begin{equation*}
E\left[x_{j}^{*} x(t)\right]=\sum_{i=1}^{\infty} E\left[x_{i} x_{j}^{*}\right] \phi_{i}(t) \tag{1}
\end{equation*}
$$

We showed earlier that the coefficients of orthonormal expansion of a signal are obtained via:

$$
\begin{align*}
x_{j} & =\int_{T} x(u) \phi_{j}^{*}(u) d u \tag{2}\\
x_{j}^{*} & =\int_{T} x *(u) \phi_{j}(u) d u
\end{align*}
$$

Substitute 2 in 1 to yield:

$$
E\left[\int_{T} x^{*}(u) \phi_{j}(u) d u x(t)\right]=\sum_{i=1}^{\infty} E\left(x_{i} x_{j}^{*}\right) \phi_{i}(t)
$$

We wish to impose the following condition on the above equation:

$$
E\left(x_{i} x_{j}^{*}\right)=\lambda_{i} \delta_{i j}
$$

This yields:

$$
\begin{aligned}
\int_{T} E\left[x(t) x^{*}(u)\right] \phi_{j}(u) d u & =\lambda_{j} \phi_{j}(t) \\
\int_{T} R_{x}(t, u) \phi_{j}(u) d u & =\lambda_{j} \phi_{j}(t)
\end{aligned}
$$

This equation is the solution for:

$$
\begin{array}{rcl}
\hline \text { eigenfunctions : } & \phi_{j}(t) & j=1,2, \ldots \\
\text { eigenvalues : } & \lambda_{j} & j=1,2, \ldots
\end{array}
$$

for the autocorrelation function.
Thus, to represent a stochastic process via a linear combination of orthonormal basis functions with orthogonal coefficients, the basis functions should be chosen to be the eigen functions of the autocorrelation of the random signal. The variance of the i th coefficient σ_{i}^{2} is the i th eigenvalue λ_{i}^{2} of the autocorrelation function.
The eigenfunction domain is the generalized spectral domain for the stochastic process. The generalized spectral representation provides a signal processing framework to analyze/address various detection and estimation problems.

