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Figure 1. Model assumed in parameter estimation problem

- We are interested in the value of the parameter A
- Assign a cost function to the estimator error as a measure of our receiver performance.
- Transition pdf of observed/measured vector is given by p(R|A)

Estimation error : é(R) = A — ;Y(R’)

Therefore : €1 = ;T— 1211, €9 = Z}__‘AQ etc.

i.e. € depends on the observation R and the estimation rule.

Cost function: R(€) . .

We try to minimize R over the probability space of A and R by selecting the appropriate estimation rule.

Single Parameter Case
Assume apriori pdf P(A) is known.

1. Minimum Mean Squared Error (MMSE) estimator:

2
RE =E[e]
~ B[4~ A
=E[(A-A(R))?]
where the expectation is taken over the probability space of A and R.



Objective: Choose A(é) that minimizes the above cost function.

R(e) = [, [, [(A—A(R)*p(A, R)dA.dR]
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Thus, to minimize R, it is sufficient to minimize the inner integral:

For this, we find the minimum by obtaining the derivative of 9, with respect to A and setting it equal to zero.

2 (@) = 2(A(R))p(A| R)dA

A:AMMSE

= AMMSE(ﬁ) = E(A’R)

2. Minimum absolute value of error cost function:

R(E) 2 E[|A-AR)]

= [, [4|A— AR)|p(A, R)dA.dR
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Thus the minimization can be performed on:
RE@ 27 A - AR)|p(A] RydA

= [0 [AGR) — Alp(A|R)dA + [555, [A— ACR)]p(A| FydA

To minimize, use:
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Thus Agps = median of (A|§)



3. Maximum A posteriori (MAP) estimator:

Aprap is the point where P(A‘é), i.e the a posteriori pdf achieves its maximum.
Since In[.] is a monotone increasing transformation, the max point of In [p(a|ﬁ)] is also the Ay ap(R), ie.

]

— In [p(A|R)] =0
6A | A=Apnap
From the Bayes equation, we have:
5, _ P(R|A)p(A)
p(A|R) = |74
p(R)
Use this in the MAP equation:
9 (ﬁ\A)+iln (A) — O (R) =0
5A P 5A P 5A P A
_/_/ =AMAP
=0 since R is invariant in A
The MAP equation becomes:
1 ~ )
—1 A)+ —Inp(A =
51 nP(R[A) + = Inp(4) i 0

If the function P(A) is a relatively smooth function as compared with p(E|A), then the MAP estimator can be
approximated by:

This is also true the other way round. Therefore, if either p(R'IA) or p(A) is a flat function with respect to A,
then the MAP estimate point is dictated by the other pdf.

Maximum likelihood (ML) estimate:
ML estimate is used when the parameters to be estimated are non random, i.e. a priori pdf p(A) is not available.
Define the ML estimate as the one that maximizes the likelihood function

(R, A) = p(R, A)

p(ﬁ7 A) is used because the parameters are non-random. The equivalent for p(ﬁ, A) in the case random A is
p(R|A).
Note that for the random case we have:

p(R, A) = p(R|A)p(A)

If not known, then p(A) is assumed to be a "flat” or constant valued distribution. Therefore, the ML estimate
for the non-random parameter case is the same as the MAP estimate for the random parameter case when p(A)
is flat.

Properties of an estimator

- An estimate of A is unbiased if

E[A(R) = A

- A biased estimate has the form: o B
EAR)]=A+b

where b; = E[A(R) — A] is called the bias. The bias depends on:

i) Measurement

ii) Class of estimator that is used



Desirable properties of an estimator

- The estimator should be unbiased.
- The variance for the estimate should be the minimum possible. An optimum estimate is the unbiased minimum
variance estimate (UMVE). - Variance of the estimate goes to zero when the number of observations goes to
infinity. i.e.

lim Var[A(R)] =0

N—o0

In this case, A is called a consistent estimate.

Fisher information

Likelihood function:

Score is identified by:

_ p'(lfn;a) _ %p(ﬁ;a)
p(R;a) p(R;a)

Note: The knowledge of V is equivalent to knowing the likelihood function. Thus the score V is sufficient statistic
in this case.

Properties of Score

i) Mean:
5 R‘; —
E(V) = [, 20 p(R; a)dR
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ii) Variance of score:
I3(a) =war(V)= E(V?)

= [, [Z np(B;a)]*p(R; a)dR

Note that the variance of score is only a function of the parameter a. The subscript Rin I 7 is used to identify
the channel that is used for observation. In other words, this is for the class or set of measurements from a
specific channel.

I5(a) is called the Fisher information and it depends on the specific channel that is used for the observation.

However, it is invariant in a specific R. Let
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where 1;’s are independent. Thus, we have:
p(Ra) =TI p(ria)
= Inp(R;a) = Eil Inp(ry; a)

= % lnp(]:’,; a) = Zfil % Inp(rs;a)

If we denote the individual score for the ith measurement as:
)
V; & 5o Inp(r;; a)

then . N
V = % Inp(R;a)=>;_,V;

= V(R) =X, Vi(ry)

Since 7;’s are independent, V,’s are also independent rv’s. Therefore, we have:

Var(V Z Var(V
Also, variance of score is the Fisher information; thus
Ia() = 3" 11, (@)
This implies that Fisher information is additive for independent observations.

If r;’s are independent identically distributed (iid) with pdf po(r;), then

V; =L Inpo(ry)

Another expression for Fisher information
We begin with

5V = g p(fa) = ()
o (2 " /N2
_p pp2(p) — % _ (%)

Consider

G p(fa) oz
B =, M;(Ra p(R; a)dR

52, P,

Z 5a2p( )dﬁ

= %/p(ﬁ; a)dR
z



Since %p(ﬁ; a) = %/ — (%)2, the expectation on both side yields:
E|Lp(Ria)| =E|—(£)°
5a2 p( ; a) ( P )
= ~B[V?)

= I(a)
= I5(a) = fE[%p(R'; a)}
— _E[gv}

Cramer Rao Bound
An estimate @y (ﬁ) is said to be more ”efficient” than another estimate a; (ﬁ) if
E[[a - aa(ﬁ)ﬂ <E [[a - @(ﬁ)ﬂ
Let a(R) be an estimate of a, e.g.
a(R) = a+ba(R)

——

bias
We know that the mean value of the score is zero, i.e. E(V) = 0.
Thus, for the covariance of the estimator and score, we have:

E[(v-¥)a- é)} = E(Va) — aB(V) = E(Va)

Substitute for V on the right side:

= [, £p(R;a).a(R)dR
Since R and as a result a(R) are invariant in a, we can move the % outside:

— —

cov(V, a) /Zd(ﬁ)p(R; a)dR

&l

expected value of the estimate

%[aer@]
=1+ f@(a)

where f3(a) = £bs. Note that f3(a) is not an rv. Also, for an unbiased estimator f;(a) = 0 and cov = 1.

Moreover, from Schwartz inequality, we have:

var(a).var(V) > cov?(V, a)



Note that
El(z + ay)’] = E(z®) + E(y®) + &® + 2E(zy)a > 0

Consider the quadratic in «
E(y?).0® + a.2E(xy) + E(z?) =0

For this to have no solution,
E*(zy) < E(2*)E(y?)

~ cov?(V,a)
= var(a) > o (V)

[1+fa(a)]?

I5(a)
This is called the Cramer Ra_o bound which shows how Fisher information limits the performance of estimators.
e.g. For an unbiased E(a) =a =a

= var(a) >

var(@) =E [(a - 5)2}

~ A
=F [(a - a)z} £ mean square error

Also for an unbiased estimator, f;(a) = 0. Therefore, the CR bound for unbiased information is given by:

1
MSE(a) > ()
The efficiency of an unbiased estimator is defined by:
@
eff(a) = valz":d) =1

It is to be noted that an ML estimator is not necessarily an efficient one. However, if one such estimator exists,
then it must be ML.



