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Figure 1. Model assumed in parameter estimation problem

- We are interested in the value of the parameter ~A
- Assign a cost function to the estimator error as a measure of our receiver performance.
- Transition pdf of observed/measured vector is given by p(~R

∣∣ ~A)

Estimation error : ~ε(~R) = ~A− ~̂A(~R)

Therefore : ε1 = ~̂A− Â1, ε2 = ~̂A− Â2 etc.
i.e. ε depends on the observation ~R and the estimation rule.

Cost function: R(~ε)
We try to minimize R over the probability space of ~A and ~R by selecting the appropriate estimation rule.

Single Parameter Case
Assume apriori pdf P (A) is known.

1. Minimum Mean Squared Error (MMSE) estimator:

R(~ε) = E
[∣∣~ε

∣∣2]
= E

[
(A− Â)2

]
= E

[
(A− Â(R))2

]

where the expectation is taken over the probability space of ~A and ~R.



Objective: Choose Â(~R) that minimizes the above cost function.

R(ε) =
∫
Z

∫
A

[
(A− Â(R))2p(A, ~R)dA.d~R

]

=
∫
Z

∫

A

[
(A− Â(R))2p(A

∣∣~R)dA
]

︸ ︷︷ ︸
R1(ε)

p(~R)︸︷︷︸
+ve

d~R

Thus, to minimize R, it is sufficient to minimize the inner integral:

R1(ε) =
∫

A

(A− Â(~R))2p(A
∣∣~R)dA

For this, we find the minimum by obtaining the derivative of R1 with respect to Â and setting it equal to zero.

δR1

δÂ
(~ε) = 2

(
Â(~R)

)
p(A

∣∣~R)dA

∣∣∣∣
Â=ÂMMSE

or
∫

A
ÂMMSE(~R)p(A

∣∣~R)dA =
∫

A
A.p(A

∣∣~R)dA

⇒ ÂMMSE(~R)
∫

A

p(A
∣∣~R)dA

︸ ︷︷ ︸
=1

= E(A
∣∣~R)

⇒ ÂMMSE(~R) = E(A
∣∣~R)

2. Minimum absolute value of error cost function:

R(~ε) , E
[∣∣A− Â(~R)

∣∣]

=
∫
Z

∫
A

∣∣A− Â(~R)
∣∣p(A, ~R)dA.d~R

=
∫
Z

∫

A

∣∣A− Â(~R)
∣∣p(A

∣∣~R)dA

︸ ︷︷ ︸
R1(ε)

p(~R)d~R

Thus the minimization can be performed on:

R(~ε) ,
∫∞
−∞

∣∣A− Â(~R)
∣∣p(A

∣∣~R)dA

=
∫ Â(~R)

−∞
[
Â(~R)−A

]
p(A

∣∣~R)dA +
∫∞

Â(~R)

[
A− Â(~R)

]
p(A

∣∣~R)dA

To minimize, use:
δR1

δÂ
(~ε)

∣∣∣∣
Â=Âabs

= 0

⇒ ∫ Â

−∞ p(A
∣∣~R)dA− ∫∞

Â
p(A

∣∣~R)dA + Âp(Â
∣∣~R)− Âp(Â

∣∣~R)
∣∣∣∣
Â=Âabs

= 0

⇒
∫ Âabs

−∞
p(A

∣∣~R)dA =
∫ ∞

Âabs

p(A
∣∣~R)dA

Thus Âabs = median of (A
∣∣~R).



3. Maximum A posteriori (MAP) estimator:
ÂMAP is the point where P (A

∣∣~R), i.e the a posteriori pdf achieves its maximum.
Since ln[.] is a monotone increasing transformation, the max point of ln [p(a

∣∣~R)] is also the ÂMAP (~R), i.e.

δ

δA
ln [p(A

∣∣~R)]
∣∣∣∣
A=ÂMAP

= 0

From the Bayes equation, we have:

p(A
∣∣~R) =

p(~R
∣∣A)p(A)

p(~R)

Use this in the MAP equation:

δ

δA
ln p(~R

∣∣A) +
δ

δA
ln p(A)− δ

δA
ln p(~R)

︸ ︷︷ ︸
=0 since ~R is invariant in A

∣∣∣∣
Â=ÂMAP

= 0

The MAP equation becomes:
δ

δA
ln p(~R

∣∣A) +
δ

δA
ln p(A)

∣∣∣∣
Â=ÂMAP

= 0

If the function P (A) is a relatively smooth function as compared with p(~R
∣∣A), then the MAP estimator can be

approximated by:
δ

δA
ln p(~R

∣∣A)
∣∣∣∣
Â=ÂMAP

= 0

This is also true the other way round. Therefore, if either p(~R
∣∣A) or p(A) is a flat function with respect to A,

then the MAP estimate point is dictated by the other pdf.

Maximum likelihood (ML) estimate:
ML estimate is used when the parameters to be estimated are non random, i.e. a priori pdf p(A) is not available.
Define the ML estimate as the one that maximizes the likelihood function

L(~R, A) = p(~R, A)

p(~R, A) is used because the parameters are non-random. The equivalent for p(~R,A) in the case random A is
p(~R

∣∣A).
Note that for the random case we have:

p(~R,A) = p(~R
∣∣A)p(A)

If not known, then p(A) is assumed to be a ”flat” or constant valued distribution. Therefore, the ML estimate
for the non-random parameter case is the same as the MAP estimate for the random parameter case when p(A)
is flat.

Properties of an estimator

- An estimate of A is unbiased if
E[Â(~R)] = A

- A biased estimate has the form:
E[Â(~R)] = A + b̄Â

where b̄Â = E[Â(~R)−A] is called the bias. The bias depends on:
i) Measurement
ii) Class of estimator that is used



Desirable properties of an estimator

- The estimator should be unbiased.
- The variance for the estimate should be the minimum possible. An optimum estimate is the unbiased minimum
variance estimate (UMVE). - Variance of the estimate goes to zero when the number of observations goes to
infinity. i.e.

lim
N→∞

V ar[Â(~R)] = 0

In this case, Â is called a consistent estimate.

Fisher information

Likelihood function:
L(a) , p(~R; a)

⇒ ln L(a) = ln p(~R; a)

Score is identified by:
V = δ

δa ln L(a) = δ
δa ln p(~R; a)

= p′(~R;a)

p(~R;a)
=

δ
δa p(~R;a)

p(~R;a)

Note: The knowledge of V is equivalent to knowing the likelihood function. Thus the score V is sufficient statistic
in this case.

Properties of Score

i) Mean:

E(V) =
∫
Z

δ
δa p(~R;a)

p(~R;a)
p(~R; a)d~R

=
∫
Z

δ
δap(~R; a)d~R

= δ
δa

∫
Z p(~R; a)d~R︸ ︷︷ ︸

=1

= δ
δa (1) = 0

⇒ E(V) = 0

ii) Variance of score:
I~R(a) = var(V) = E(V2)

=
∫
Z

[
δ
δa ln p(~R; a)

]2
p(~R; a)d~R

Note that the variance of score is only a function of the parameter a. The subscript ~R in I~R is used to identify
the channel that is used for observation. In other words, this is for the class or set of measurements from a
specific channel.
I~R(a) is called the Fisher information and it depends on the specific channel that is used for the observation.
However, it is invariant in a specific ~R. Let

~R =




r1

r2

...
rN






where ri’s are independent. Thus, we have:

p(~R; a) =
∏N

i=1 p(ri; a)

⇒ ln p(~R; a) =
∑N

i=1 ln p(ri; a)

⇒ δ
δa ln p(~R; a) =

∑N
i=1

δ
δa ln p(ri; a)

If we denote the individual score for the ith measurement as:

Vi , δ

δa
ln p(ri; a)

then
V = δ

δa ln p(~R; a) =
∑N

i=1 Vi

⇒ V(~R) =
∑N

i=1 Vi(ri)

Since ri’s are independent, Vi’s are also independent rv’s. Therefore, we have:

V ar(V) =
N∑

i=1

V ar(Vi)

Also, variance of score is the Fisher information; thus

I~R(a) =
N∑

i=1

Iri(a)

This implies that Fisher information is additive for independent observations.

If ri’s are independent identically distributed (iid) with pdf p0(ri), then

Vi = δ
δa ln p0(ri)

⇒ Ii(a) = V ar(Vi) , I0(a)

⇒ I~R(a) =
∑N

i=1 Ii(a) = N.I0(a)

Another expression for Fisher information
We begin with

δ
δaV = δ2

δa2 ln p(~R; a) = δ
δa

(
p′

p

)

= p′′p−(p′)2

p2 = p′′

p − (
p′

p

)2

Consider

E(p′′

p ) =
∫
Z

δ2

δa2 p(~R;a)

p(~R;a)
p(~R; a)d~R

=
∫
Z

δ2

δa2 p(~R; a)d~R

= δ2

δa2

∫

Z
p(~R; a)d~R

︸ ︷︷ ︸
=1

= 0



Since δ2

δa2 p(~R; a) = p′′

p − (
p′

p

)2, the expectation on both side yields:

E
[

δ2

δa2 p(~R; a)
]

= E
[
− (

p′

p

)2
]

= −E[V2]

= I~R(a)

⇒ I~R(a) = −E
[

δ2

δa2 p(~R; a)
]

= −E
[

δ
δaV

]

Cramer Rao Bound

An estimate â1(~R) is said to be more ”efficient” than another estimate â1(~R) if

E
[
[a− â1(~R)]2

]
< E

[
[a− â2(~R)]2

]

Let â(~R) be an estimate of a, e.g.
â(~R) = a + bâ(~R)︸ ︷︷ ︸

bias

We know that the mean value of the score is zero, i.e. E(V) = 0.
Thus, for the covariance of the estimator and score, we have:

E
[
(V− V̄)(â− ¯̂a)

]
= E(Vâ)− ¯̂aE(V) = E(Vâ)

Substitute for V on the right side:

cov(V, â) = E(V.â)

= E
[

δ
δa ln p(~R; a).â(~R)

]

=
∫
Z

δ
δa p(~R;a)

p(~R;a)
.â(~R)p(~R; a)d~R

=
∫
Z

δ
δap(~R; a).â(~R)d~R

Since ~R and as a result â(~R) are invariant in a, we can move the δ
δa outside:

cov(V, â) = δ
δa

∫

Z
â(~R)p(~R; a)d~R

︸ ︷︷ ︸
expected value of the estimate

= δ
δa [a + bâ]

= 1 + fâ(a)

where fâ(a) = δ
δabâ. Note that fâ(a) is not an rv. Also, for an unbiased estimator fâ(a) = 0 and cov = 1.

Moreover, from Schwartz inequality, we have:

var(â).var(V) ≥ cov2(V, â)



Note that
E[(x + αy)2] = E(x2) + E(y2) + α2 + 2E(xy)α ≥ 0

Consider the quadratic in α
E(y2).α2 + α.2E(xy) + E(x2) = 0

For this to have no solution,
E2(xy) < E(x2)E(y2)

⇒ var(â) ≥ cov2(V,â)
var(V)

⇒ var(â) ≥ [1+fâ(a)]2

I~R(a)

This is called the Cramer Rao bound which shows how Fisher information limits the performance of estimators.
e.g. For an unbiased E(â) = ¯̂a = a

var(â) = E
[
(â− ¯̂a)2

]

= E
[
(â− a)2

]
, mean square error

Also for an unbiased estimator, fâ(a) = 0. Therefore, the CR bound for unbiased information is given by:

MSE(â) ≥ 1
I~R(a)

The efficiency of an unbiased estimator is defined by:

eff(â) =
1

I~R(a)

var(â)
≤ 1

It is to be noted that an ML estimator is not necessarily an efficient one. However, if one such estimator exists,
then it must be ML.


