EE 631: Estimation and Detection Part 3

Dr. Mehrdad Soumekh

Maximum Likelihood (ML) decision

Minimum probability of error or MAP decision rule is given by:
($C_{i i}=0$ and $C_{i j}=1, i \neq j$)

$$
P_{m} \Lambda_{m}(\vec{R}) \gtrless \underset{\substack{\text { not } H_{m} \\ \text { not } H_{k}}}{ } P_{k} \Lambda_{k}(\vec{R})
$$

- decision: $\max _{[k]} P_{k} \Lambda_{k}(\vec{R})$.

If a priori probabilities i.e. P_{i} 's are not known, one option would be to assume equally probable hypotheses; i.e. $P_{i}=\frac{1}{M}, i=0,1, \cdots, M-1$.
For this choice of a priori probabilities, the test becomes

$$
\begin{gathered}
\Lambda_{m}(\vec{R}) \underset{\substack{\text { not } H_{m}} \underset{\substack{\text { not } H_{k}}}{\text { not }}(\vec{R})}{\text { or } p_{M}(\vec{R}) \underset{\text { not } H_{m}}{\text { not }} p_{K}(\vec{R})}
\end{gathered}
$$

- decision: $\max _{[k]} p_{k}(\vec{R})$ i.e. choose the hypothesis that yields the largest $p_{k}(\vec{R})$ or $\Lambda_{k}(\vec{R})$. This receiver is known as the maximum likelihood (ML) receiver or detector.
We showed that the decision threshold in the binary hypothesis testing, i.e.

$$
\Lambda(\vec{R}) \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \frac{P_{0}\left(C_{10}-C_{00}\right)}{P_{1}\left(C_{01}-C_{11}\right)} \triangleq \eta
$$

depends on the a priori probability P_{0}.
Thus the statistic used for the decision making, i.e. $\Lambda(\vec{R})$ is invariant in a priori probability P_{0}. This implies that the sufficient statistic is unaffected for the ML detector. Only the threshold η varies with P_{0}.

Minimax detector

This is also used for the case of unknown a priori probabilities.
For a given channel, the risk is a function of $P_{i} \forall i=0,1, \cdots, M-1$.
We can inspect all possible risk functions $\mathfrak{R}(\vec{P})$ in the domain of \vec{P}. We then choose the \vec{P} values that maximize the risk function (worst case scenario), and set up the decision based on that a priori vector.

- decision: $\min \left[\max _{\vec{P}} \mathfrak{R}(\vec{P})\right]=\min \left[\vec{R}\left(\vec{P}_{\text {max }}\right)\right]$.
- example: Binary decision

$$
\Lambda(\vec{R}) \gtrless_{\text {selecect } H_{0}}^{\text {select } H_{1}} \eta=\frac{P_{0}\left(C_{10}-C_{00}\right)}{P_{1}\left(C_{01}-C_{11}\right)}
$$

For minimax detector, use

$$
\Lambda(\vec{R}) \underset{\text { select } H_{0}}{\gtrless \text { select } H_{1}} \eta^{*}=\frac{P_{0}^{*}\left(C_{10}-C_{00}\right)}{P_{1}^{*}\left(C_{01}-C_{11}\right)}
$$

where $P_{1}^{*}=\left(1-P_{0}^{*}\right)$
Consider:

$$
\begin{aligned}
& H_{0}: r_{i} \stackrel{\text { iid }}{\stackrel{N}{\mathrm{i}}\left(0, \sigma_{0}^{2}\right)} \\
& H_{1}: r_{i} \stackrel{\text { id }}{\sim} \mathbb{N}\left(0, \sigma_{1}^{2}\right)
\end{aligned}
$$

where $i=1, \cdots, N$ and $\sigma_{1}>\sigma_{0}$. Observation pdf under $H_{K}, K=0,1$ is:

$$
p\left(\vec{R} \mid H_{K}\right)=\frac{1}{\left(\sqrt{2 \pi} \sigma_{K}\right)^{N}} \exp \left[-\frac{\sum_{i=1}^{N} r_{i}^{2}}{2 \sigma_{K}^{2}}\right]
$$

Likelihood function:

$$
\begin{aligned}
& \lambda(\vec{R})=\frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)} \\
& =\left(\frac{\sigma_{0}}{\sigma_{1}}\right)^{N} \exp \left[\frac{1}{2}\left(\frac{1}{\sigma_{0}^{2}}+\frac{1}{\sigma_{1}^{2}}\right) \sum_{i=1}^{N} r_{i}^{2}\right] \underset{\text { select } H_{0}}{\text { select } H_{1}} \eta
\end{aligned}
$$

Log-likelihood function:

$$
\ln \lambda(\vec{R})=N \ln \left(\frac{\sigma_{0}}{\sigma_{1}}\right)+\left[\frac{1}{2}\left(\frac{1}{\sigma_{0}^{2}}+\frac{1}{\sigma_{1}^{2}}\right) \sum_{i=1}^{N} r_{i}^{2}\right] \underset{\text { select } H_{0}}{\text { select } H_{1}} \ln \eta
$$

Thus the sufficient statistic can be expressed via:

$$
l(\vec{R})=\underbrace{\frac{1}{N} \sum_{i=1}^{N} r_{i}^{2}}_{\bar{R}^{2}} \underset{\text { select } H_{0}}{H_{0}^{\text {selet } H_{1}} \frac{\ln \eta+N \ln \frac{\sigma_{1}}{\sigma_{0}}}{\frac{N}{2}\left(\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}\right)} \triangleq \gamma}
$$

Test: General Bayes decision

$$
\bar{R}^{2} \gtrless \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \gamma
$$

The r.v. $l(\vec{R})=\bar{R}^{2}$ is central chi-square distributed with N degrees of freedom. The distribution is central since r_{i} 's have zero mean.
$E\left(\bar{R}^{2} \mid H_{K}\right)=\sigma_{K}^{2}$, for $K=0,1$. Variance of \bar{R}^{2} decreases as N increases.

Minimum probability of error as a function of the a priori probabilities

In general, probability of error P_{e} is given as:

$$
\begin{aligned}
& P_{e}=P_{0} \cdot P_{F}+P_{1} \cdot P_{M} \\
& =P_{0} \cdot P_{F}+\left(1-P_{0}\right) \cdot P_{M} \\
& =P_{M}+P_{0}\left(P_{F}-P_{M}\right)
\end{aligned}
$$

This expression indicates that the probability of error P_{e} is a linear function of P_{0} if both P_{F} and P_{M} are invariant in P_{0}.
Note that in a Bayes decision rule, the threshold and as a result P_{F} and P_{M} are functions of P_{0} and nonlinear as shown in figure 1 .
In a general Bayes rule problem, P_{F} and P_{M} are defined as:

$$
\begin{aligned}
& P_{F}=\int_{\gamma\left(P_{0}\right)}^{\infty} p\left(l \mid H_{0}\right) d l \\
& P_{M}=\int_{-\infty}^{\gamma\left(P_{0}\right)} p\left(l \mid H_{1}\right) d l
\end{aligned}
$$

Minimum probability of error as a function of a priori probabilities is given by:

$$
P_{e}=P_{0} \cdot P\left[l>\gamma\left(P_{0}\right) \mid H_{0}\right]+\left(1-P_{0}\right) P\left[l<\gamma\left(P_{0}\right) \mid H_{1}\right]
$$

where $\gamma\left(P_{0}\right) \triangleq g\left[\eta\left(P_{0}\right)\right]=g\left(\frac{P_{0}}{1-P_{0}}\right)$.
$\eta\left(P_{0}\right)=\frac{P_{0}}{1-P_{0}}$ with $C_{00}=C_{11}=0$ and $C_{10}=C_{01}=1$.

Figure 1. Plot of P_{0} vs. P_{e} for Bayes decision rule

Figure 2. Plot of P_{0} vs. $P_{e_{m i n}}$

Suppose $P_{e_{\text {min }}}$ takes on its maximum value at $P_{0}=P_{0}^{*}$ (i.e. minimax detector with unitary cost) as shown in figure (2)
Select the the threshold based on $P_{0}=P_{0}^{*}$.
Therefore, $\eta\left(P_{0}^{*}\right)=\frac{P_{0}^{*}}{1-P_{0}^{*}}$ and $\gamma\left(P_{0}^{*}\right)=g\left(\frac{P_{0}^{*}}{1-P_{0}^{*}}\right)$. Once a threshold is selected based on $P_{0}=P_{0}^{*}$, then the resultant probability of error for the actual P_{0} is:

$$
\begin{aligned}
& P_{e}^{*}\left(P_{0}\right)=P_{0} \cdot P_{F}^{*}+\left(1-P_{0}\right) \cdot P_{M}^{*} \\
& =P_{M}^{*}+P_{0}\left(P_{F}^{*}-P_{M}^{*}\right)
\end{aligned}
$$

which is a linear function of P_{0}.

Figure 3.

Consider the curve for P_{e}^{*} to be as shown in figure 3. We know that $P_{e_{m i n}}\left(P_{0}\right)$ should always yield the minimum probability of error. But from figure 3, we have $P_{e_{\text {min }}}(\alpha)>P_{e}^{*}(\alpha)$ which is not possible. Thus the distribution of the line $P_{e}^{*}\left(P_{0}\right)$ should be above the curve $P_{e_{m i n}}\left(P_{0}\right)$ at every point except one where the two curves touch each other. In other words, the line for $P_{e}^{*}\left(P_{0}\right)$ is a tangent to the latter curve as shown in figure 4 .

Figure 4.

This implies that $P_{e}^{*}\left(P_{0}\right)=$ constant, i.e. not varying with P_{0}
Therefore

$$
\begin{aligned}
P_{e}^{*}\left(P_{0}\right)= & P_{M}^{*}+P_{0} \underbrace{\left(P_{F}^{*}-P_{M}^{*}\right)}_{=0} \\
& \Rightarrow P_{F}^{*}=P_{M}^{*}
\end{aligned}
$$

at the minimax point.

Neyman Pearson criterion

We wish to construct the decision problem based on the detection and false alarm probabilities.

- Criterion: Fix $P_{F}=\alpha$ and maximize P_{D}.
- Solution: Define the Lagrange:

$$
\mathfrak{L}=P_{D}-\lambda\left(P_{F}-\alpha\right)
$$

where λ is the Lagrange multiplier. - Substitute for P_{D} and P_{F} based on the pdf's and the decision threshold.

$$
\begin{aligned}
& \mathfrak{L}=\int_{\mathbb{Z}_{1}} p\left(\vec{R} \mid H_{1}\right) d \vec{R}-\lambda\left[\int_{\mathbb{Z}_{1}} p\left(\vec{R} \mid H_{0}\right) d \vec{R}-\alpha\right] \\
& =\lambda \alpha+\int_{\mathbb{Z}_{1}}\left[p\left(\vec{R} \mid H_{1}\right)-\lambda\left(\vec{R} \mid H_{0}\right)\right] d \vec{R}
\end{aligned}
$$

Case 1: $\lambda<0$
In this case, the integrand $\left[p\left(\vec{R} \mid H_{1}\right)-\lambda\left(\vec{R} \mid H_{0}\right)\right]$ is always positive. Thus the function \mathfrak{L} is maximized when the integration is done over the largest possible region for \mathbb{Z}, i.e $\mathbb{Z}_{1}=\mathbb{Z}$.
\Rightarrow choose H_{1} for all \vec{R}, which is not an acceptable solution.
Case 2: $\lambda>0$
To achieve maximum \mathfrak{L}, we should integrate over the region in \mathbb{Z} where the integrand is positive. i.e. $\left[p\left(\vec{R} \mid H_{1}\right)-\lambda\left(\vec{R} \mid H_{0}\right)\right]>0$ for $\vec{R} \in \mathbb{Z}_{1}$.
This yields the following decision rule:

$$
\begin{aligned}
& p\left(\vec{R} \mid H_{1}\right) \underset{\substack{\text { select } H_{0}} \stackrel{\text { select } H_{1}}{\text { sel }} \lambda p\left(\vec{R} \mid H_{0}\right)}{\text { or } \Lambda(\vec{R})=\frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)} \gtrless \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \lambda}
\end{aligned}
$$

This is the Bayes decision rule with

$$
\lambda \triangleq \eta=\frac{P_{0}\left(C_{10}-C_{00}\right)}{P_{1}\left(C_{01}-C_{11}\right)}
$$

To find λ (the threshold), we use the fact that $P_{F}=\alpha$, implying

$$
P_{F}=\int_{\lambda}^{\infty} p\left(\Lambda \mid H_{0}\right) d \Lambda
$$

Therefore, we vary λ until $P_{F}=\alpha$ is achieved.

Receiver Operating Characteristics (ROC)

ROC is simply a plot of P_{D} vs P_{F} for a given receiver (decision rule) as a function of the parameter of interest. Likelihood ratio test (LRT):

$$
\lambda=\frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)} \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \eta
$$

yields P_{F} and P_{D} as functions of parameters such as additive noise variance or average SNR, signaling type (unipolar, bipolar) etc.

Example

$$
\begin{array}{ll}
H_{0}: & r_{i}=A_{0}+n_{i} \quad i=1,2, \ldots, N \\
H_{1}: & r_{i}=A_{1}+n_{i}
\end{array}
$$

where $\left(A_{0}, A_{1}\right)$ are constants and $n_{i} \stackrel{\text { i.i.d }}{\sim}\left(0, \sigma_{n}^{2}\right)$.
We showed that

$$
\begin{aligned}
& \Lambda(\vec{R})=\frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)} \\
& =\exp \left[\frac{\sum_{i=1}^{N}\left(r_{i}-A_{0}\right)^{2}-\left(r_{i}-A_{1}\right)^{2}}{2 \sigma_{n}^{2}}\right]
\end{aligned}
$$

For general ASK signaling, we have:

$$
l(\vec{R})=\underbrace{\sum_{i=1}^{N}\left(S_{1 i}-S_{0 i}\right) r_{i}}_{\left(\overrightarrow{S_{1}}-\overrightarrow{S_{0}}\right)^{T} \cdot \vec{R}} \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \ln \eta \cdot \sigma_{n}^{2}+\frac{1}{2} \sum_{i=1}^{N}\left(S_{1 i}^{2}-S_{0 i}^{2}\right)
$$

For this example, we have $S_{0 i}=A_{0}$ and $S_{1 i}=A_{1}, \forall i=1,2, \ldots, N$. Thus the test becomes:

$$
l(\vec{R})=\sum_{i=1}^{N}\left(A_{1}-A_{0}\right) r_{i} \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \ln \eta \cdot \sigma_{n}^{2}+\frac{N}{2}\left(A_{1}^{2}-A_{0}^{2}\right)
$$

Redefine the sufficient statistic by normalizing it as:

$$
l(\vec{R}) \triangleq \frac{\sum_{i=1}^{N} r_{i}}{\sqrt{N} \sigma_{n}} \gtrless \gtrless_{\text {selecect } H_{0}}^{\text {select } H_{1}} \frac{\ln \eta \cdot \sigma_{n}}{\sqrt{N}\left(A_{1}-A_{0}\right)}+\frac{\sqrt{N}\left(A_{1}+A_{0}\right)}{2 \sigma_{n}}
$$

We have the following distributions which are also shown in figure 5:

$$
\begin{aligned}
l \mid H_{0} & \sim N\left(\frac{\sqrt{N} A_{0}}{\sigma_{n}}, 1\right) \\
l \mid H_{1} & \sim N\left(\frac{\sqrt{N} A_{1}}{\sigma_{n}}, 1\right)
\end{aligned}
$$

Figure 5.

Define $d \triangleq \frac{\sqrt{N}\left(A_{1}-A_{0}\right)}{\sigma_{n}}$ and $D \triangleq \frac{\sqrt{N}\left(A_{1}+A_{0}\right)}{\sigma_{n}}$. Therefore, the LRT becomes:

$$
l(\vec{R}) \triangleq \frac{\sum_{i=1}^{N} r_{i}}{\sqrt{N} \sigma_{n}} \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \frac{\ln \eta}{d}+\frac{D}{2}
$$

Note: For unipolar ASK where $A_{0}=0$ and $D=d$, the quantity representing average bit energy under $P_{0}=$ $P_{1}=\frac{1}{2}$ becomes:

$$
E_{b}=\frac{1}{2}\left(A-1^{2}+A_{0}^{2}\right)=\frac{\sigma_{n}^{2}}{4 N}\left(D_{2}+d^{2}\right)
$$

Thus, with (d, D), we identify two important features of this form of data transmission.
a) Separation of the two hypotheses in the l domain;
b) Average energy of the transmitter with respect to the noise power.

Performance probabilities:

$$
\begin{aligned}
& P_{F}=\int_{\frac{\ln \eta}{d}+\frac{D}{2}}^{\infty} p\left(l \mid H_{0}\right) d l \\
& =\int_{\frac{\ln \eta}{d}+\frac{D}{2}}^{\infty}\left[\frac{1}{2 \pi} e^{\left\{-\frac{\left(l-\frac{\sqrt{N} A_{0}}{\sigma n}\right)^{2}}{2}\right\}}\right] d l \\
& =\operatorname{erfc}^{*}\left(\frac{\ln \eta}{d}+\frac{D}{2}-\frac{\sqrt{N} A_{0}}{\sigma_{n}}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& P_{D}=\int_{\frac{\ln \eta}{d}+\frac{D}{2}}^{\infty} p\left(l \mid H_{1}\right) d l \\
& =\operatorname{erfc} c^{*}\left(\frac{\ln \eta}{d}+\frac{D}{2}-\frac{\sqrt{N} A_{1}}{\sigma_{n}}\right)
\end{aligned}
$$

$\underline{\text { Property: }}$ The threshold η for the likelihood ratio test is given by:

$$
\eta=\frac{d p_{D}}{d P_{F}}
$$

at the operating point of interest. Proof:

$$
\begin{aligned}
& P_{D}=\int_{\eta}^{\infty} p\left(\Lambda \mid H_{1}\right) d \Lambda \\
& =\int_{\mathbb{Z}_{1}} p\left(\vec{R} \mid H_{1}\right) d \vec{R}
\end{aligned}
$$

But, we know:

$$
\Lambda(\vec{R})=\frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)}
$$

or

$$
p\left(\vec{R} \mid H_{1}\right)=\Lambda(\vec{R}) \cdot p\left(\vec{R} \mid H_{0}\right)
$$

We substitute this in the expression for P_{D} :

$$
P_{D}=\int_{\mathbb{Z}_{1}} \Lambda(\vec{R}) \cdot p\left(\vec{R} \mid H_{0}\right) d \vec{R}
$$

Rewrite the above in terms of $\Lambda \mid H_{0}$:

$$
P_{D}=\int_{\eta}^{\infty} \Lambda \cdot p\left(\Lambda \mid H_{0}\right) d \Lambda
$$

Figure 6.

We also have:

$$
P_{F}=\int_{\eta}^{\infty} p\left(\Lambda \mid H_{0}\right) d \Lambda
$$

Therefore, using Leibnitz rule of differentiation (refer to Papoulis \& Pillai, page: 181)

$$
\begin{aligned}
& \frac{d P_{D}}{d \eta}=-\eta p\left(\eta \mid H_{0}\right) \\
& \frac{d P_{F}}{d \eta}=-p\left(\eta \mid H_{0}\right)
\end{aligned}
$$

Finally:

$$
\begin{aligned}
& \frac{d P_{D} / d \eta}{d P_{F} / d \eta} \\
& =\frac{-\eta p\left(\eta \mid H_{0}\right)}{-p\left(\eta \mid H_{0}\right)}=\eta \\
& \Rightarrow \frac{d P_{D}}{d P_{F}}=\eta
\end{aligned}
$$

