EE 631: Estimation and Detection Part 3

Dr. Mehrdad Soumekh

Maximum Likelihood (ML) decision

Minimum probability of error or MAP decision rule is given by: $(C_{ii} = 0 \text{ and } C_{ij} = 1, i \neq j)$

$$P_m \Lambda_m(\vec{R}) \gtrsim_{\text{not } H_m}^{\text{not } H_k} P_k \Lambda_k(\vec{R})$$

- decision: $\max_{[k]} P_k \Lambda_k(\vec{R})$. If a priori probabilities i.e. P_i 's are not known, one option would be to assume equally probable hypotheses; i.e. $P_i = \frac{1}{M}, i = 0, 1, \dots, M - 1$. For this choice of a priori probabilities, the test becomes

 $\Lambda_m(\vec{R}) \gtrless_{\text{not } H_m}^{\text{not } H_k} \Lambda_k(\vec{R})$

or
$$p_M(\vec{R}) \gtrsim_{\text{not } H_m}^{\text{not } H_k} p_K(\vec{R})$$

- decision: $\max_{[k]} p_k(\vec{R})$ i.e. choose the hypothesis that yields the largest $p_k(\vec{R})$ or $\Lambda_k(\vec{R})$. This receiver is known as the maximum likelihood (ML) receiver or detector.

We showed that the decision threshold in the binary hypothesis testing, i.e.

$$\Lambda(\vec{R}) \gtrsim_{\text{select } H_0}^{\text{select } H_1} \frac{P_0(C_{10} - C_{00})}{P_1(C_{01} - C_{11})} \triangleq \eta$$

depends on the a priori probability P_0 .

Thus the statistic used for the decision making, i.e. $\Lambda(\vec{R})$ is invariant in a priori probability P_0 . This implies that the sufficient statistic is unaffected for the ML detector. Only the threshold η varies with P_0 .

Minimax detector

This is also used for the case of unknown a priori probabilities. For a given channel, the risk is a function of $P_i \forall i = 0, 1, \dots, M-1$. We can inspect all possible risk functions $\Re(\vec{P})$ in the domain of \vec{P} . We then choose the \vec{P} values that maximize the risk function (worst case scenario), and set up the decision based on that a priori vector.

- decision: $\min[\max_{\vec{P}} \Re(\vec{P})] = \min[\vec{\Re}(\vec{P}_{max})].$
- example: Binary decision

$$\Lambda(\vec{R}) \gtrsim_{\text{select } H_0}^{\text{select } H_1} \eta = \frac{P_0(C_{10} - C_{00})}{P_1(C_{01} - C_{11})}$$

For minimax detector, use

$$\Lambda(\vec{R}) \gtrsim_{\text{select } H_0}^{\text{select } H_1} \eta^* = \frac{P_0^*(C_{10} - C_{00})}{P_1^*(C_{01} - C_{11})}$$

where $P_1^* = (1 - P_0^*)$ Consider:

$$H_0: r_i \stackrel{\text{\tiny ind}}{\sim} \mathbb{N}(0, \sigma_0^2)$$
$$H_1: r_i \stackrel{\text{\tiny ind}}{\sim} \mathbb{N}(0, \sigma_1^2)$$

where $i = 1, \dots, N$ and $\sigma_1 > \sigma_0$. Observation pdf under H_K , K = 0, 1 is:

$$p(\vec{R}|H_K) = \frac{1}{(\sqrt{2\pi\sigma_K})^N} exp\left[-\frac{\sum_{i=1}^N r_i^2}{2\sigma_K^2}\right]$$

Likelihood function:

$$\begin{split} \lambda(\vec{R}) &= \frac{p(\vec{R}|H_1)}{p(\vec{R}|H_0)} \\ &= \left(\frac{\sigma_0}{\sigma_1}\right)^N exp\left[\frac{1}{2}\left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma_1^2}\right)\sum_{i=1}^N r_i^2\right] \gtrless_{\text{select }H_0}^{\text{select }H_1} \eta \end{split}$$

Log-likelihood function:

$$\ln \lambda(\vec{R}) = N \ln \left(\frac{\sigma_0}{\sigma_1}\right) + \left[\frac{1}{2} \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma_1^2}\right) \sum_{i=1}^N r_i^2\right] \gtrless_{\text{select } H_0}^{\text{select } H_1} \ln \eta$$

Thus the sufficient statistic can be expressed via:

$$l(\vec{R}) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} r_i^2}_{\overline{R}^2} \gtrless_{\text{select } H_0}^{\text{select } H_1} \frac{\ln \eta + N \ln \frac{\sigma_1}{\sigma_0}}{\frac{N}{2} \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)} \triangleq \gamma$$

Test: General Bayes decision

$$\overline{R}^2 \gtrless_{\text{select } H_0}^{\text{select } H_1} \gamma$$

The r.v. $l(\vec{R}) = \overline{R}^2$ is central chi-square distributed with N degrees of freedom. The distribution is central since r_i 's have zero mean. $E(\overline{R}^2 | H_K) = \sigma_K^2$, for K = 0, 1. Variance of \overline{R}^2 decreases as N increases.

Minimum probability of error as a function of the a priori probabilities

In general, probability of error P_e is given as:

$$P_e = P_0 \cdot P_F + P_1 \cdot P_M = P_0 \cdot P_F + (1 - P_0) \cdot P_M = P_M + P_0 (P_F - P_M)$$

This expression indicates that the probability of error P_e is a linear function of P_0 if both P_F and P_M are invariant in P_0 .

Note that in a Bayes decision rule, the threshold and as a result P_F and P_M are functions of P_0 and nonlinear as shown in figure 1.

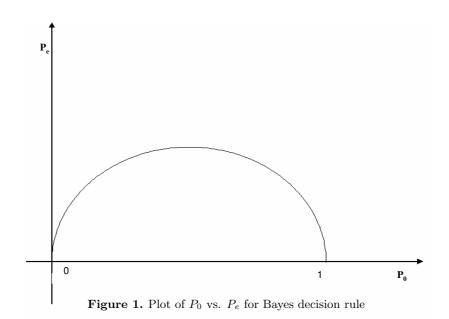
In a general Bayes rule problem, P_F and P_M are defined as:

$$P_F = \int_{\gamma(P_0)}^{\infty} p(l|H_0) dl$$
$$P_M = \int_{-\infty}^{\gamma(P_0)} p(l|H_1) dl$$

Minimum probability of error as a function of a priori probabilities is given by:

$$P_e = P_0 P[l > \gamma(P_0) | H_0] + (1 - P_0) P[l < \gamma(P_0) | H_1]$$

where $\gamma(P_0) \triangleq g[\eta(P_0)] = g(\frac{P_0}{1-P_0}).$ $\eta(P_0) = \frac{P_0}{1-P_0}$ with $C_{00} = C_{11} = 0$ and $C_{10} = C_{01} = 1.$



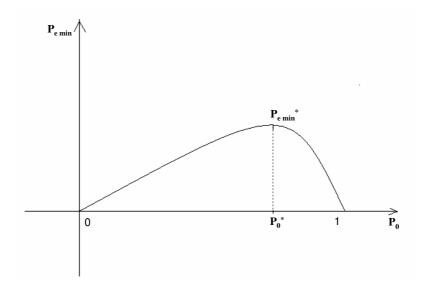


Figure 2. Plot of P_0 vs. $P_{e_{min}}$

Suppose $P_{e_{min}}$ takes on its maximum value at $P_0 = P_0^*$ (i.e. minimax detector with unitary cost) as shown in figure (2)

Select the threshold based on $P_0 = P_0^*$. Therefore, $\eta(P_0^*) = \frac{P_0^*}{1 - P_0^*}$ and $\gamma(P_0^*) = g(\frac{P_0^*}{1 - P_0^*})$. Once a threshold is selected based on $P_0 = P_0^*$, then the resultant probability of error for the actual P_0 is:

$$\begin{split} P_e^*(P_0) &= P_0.P_F^* + (1-P_0).P_M^* \\ &= P_M^* + P_0(P_F^* - P_M^*) \end{split}$$

which is a linear function of P_0 .

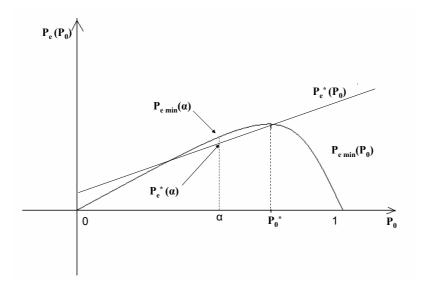


Figure 3.

Consider the curve for P_e^* to be as shown in figure 3. We know that $P_{e_{min}}(P_0)$ should always yield the minimum probability of error. But from figure 3, we have $P_{e_{min}}(\alpha) > P_e^*(\alpha)$ which is not possible. Thus the distribution of the line $P_e^*(P_0)$ should be above the curve $P_{e_{min}}(P_0)$ at every point except one where the two curves touch each other. In other words, the line for $P_e^*(P_0)$ is a tangent to the latter curve as shown in figure 4.

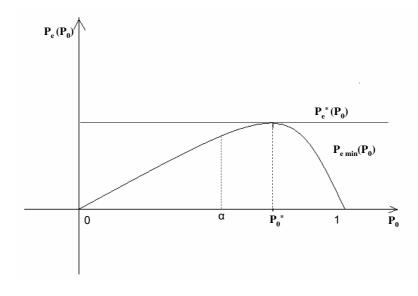


Figure 4.

This implies that $P_e^*(P_0)$ =constant, i.e. not varying with P_0 Therefore

$$P_e^*(P_0) = P_M^* + P_0 \underbrace{(P_F^* - P_M^*)}_{=0}$$
$$\Rightarrow P_F^* = P_M^*$$

at the minimax point.

Neyman Pearson criterion

We wish to construct the decision problem based on the detection and false alarm probabilities.

- Criterion: Fix $P_F = \alpha$ and maximize P_D .

- Solution: Define the Lagrange:

$$\mathfrak{L} = P_D - \lambda (P_F - \alpha)$$

where λ is the Lagrange multiplier. - Substitute for P_D and P_F based on the pdf's and the decision threshold.

$$\begin{aligned} \mathfrak{L} &= \int_{\mathbb{Z}_1} p(\vec{R} | H_1) d\vec{R} - \lambda \big[\int_{\mathbb{Z}_1} p(\vec{R} | H_0) d\vec{R} - \alpha \big] \\ &= \lambda \alpha + \int_{\mathbb{Z}_1} \big[p(\vec{R} | H_1) - \lambda(\vec{R} | H_0) \big] d\vec{R} \end{aligned}$$

<u>Case 1:</u> $\lambda < 0$

In this case, the integrand $[p(\vec{R}|H_1) - \lambda(\vec{R}|H_0)]$ is always positive. Thus the function \mathfrak{L} is maximized when the integration is done over the largest possible region for \mathbb{Z} , i.e $\mathbb{Z}_1 = \mathbb{Z}$.

 \Rightarrow choose H_1 for all \vec{R} , which is not an acceptable solution. Case 2: $\lambda > 0$

To achieve maximum \mathfrak{L} , we should integrate over the region in \mathbb{Z} where the integrand is positive. i.e. $[p(\vec{R}|H_1) - \lambda(\vec{R}|H_0)] > 0$ for $\vec{R} \in \mathbb{Z}_1$.

This yields the following decision rule:

$$p(\vec{R}|H_1) \gtrsim_{\text{select } H_0}^{\text{select } H_1} \lambda p(\vec{R}|H_0)$$

or
$$\Lambda(\vec{R}) = \frac{p(\vec{R}|H_1)}{p(\vec{R}|H_0)} \gtrsim_{\text{select } H_0}^{\text{select } H_1} \lambda$$

This is the Bayes decision rule with

$$\lambda \triangleq \eta = \frac{P_0(C_{10} - C_{00})}{P_1(C_{01} - C_{11})}$$

To find λ (the threshold), we use the fact that $P_F = \alpha$, implying

$$P_F = \int_{\lambda}^{\infty} p(\Lambda \big| H_0) d\Lambda$$

Therefore, we vary λ until $P_F = \alpha$ is achieved.

Receiver Operating Characteristics (ROC)

ROC is simply a plot of P_D vs P_F for a given receiver (decision rule) as a function of the parameter of interest. Likelihood ratio test (LRT):

$$\lambda = \frac{p(R|H_1)}{p(\vec{R}|H_0)} \gtrsim_{\text{select } H_0}^{\text{select } H_1} \eta$$

yields P_F and P_D as functions of parameters such as additive noise variance or average SNR, signaling type (unipolar, bipolar) etc.

Example

$$\begin{array}{ll} H_0: & r_i = A_0 + n_i & i = 1,2,...,N \\ H_1: & r_i = A_1 + n_i \end{array}$$

where (A_0, A_1) are constants and $n_i \stackrel{\text{i.i.d}}{\sim} (0, \sigma_n^2)$. We showed that

$$\Lambda(\vec{R}) = \frac{p(\vec{R}|H_1)}{p(\vec{R}|H_0)} = exp\left[\frac{\sum_{i=1}^{N} (r_i - A_0)^2 - (r_i - A_1)^2}{2\sigma_n^2}\right]$$

For general ASK signaling, we have:

$$l(\vec{R}) = \underbrace{\sum_{i=1}^{N} (S_{1i} - S_{0i}) r_i}_{(\vec{S_1} - \vec{S_0})^T.\vec{R}} \gtrless^{\text{select } H_1}_{\text{select } H_0} \ln \eta.\sigma_n^2 + \frac{1}{2} \sum_{i=1}^{N} (S_{1i}^2 - S_{0i}^2)$$

For this example, we have $S_{0i} = A_0$ and $S_{1i} = A_1$, $\forall i = 1, 2, ..., N$. Thus the test becomes:

$$l(\vec{R}) = \sum_{i=1}^{N} (A_1 - A_0) r_i \gtrsim_{\text{select } H_0}^{\text{select } H_1} \ln \eta . \sigma_n^2 + \frac{N}{2} (A_1^2 - A_0^2)$$

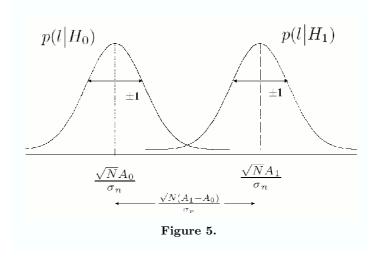
Redefine the sufficient statistic by normalizing it as:

$$l(\vec{R}) \triangleq \frac{\sum_{i=1}^{N} r_i}{\sqrt{N}\sigma_n} \gtrless_{\text{select } H_0}^{\text{select } H_1} \frac{\ln \eta.\sigma_n}{\sqrt{N}(A_1 - A_0)} + \frac{\sqrt{N}(A_1 + A_0)}{2\sigma_n}$$

We have the following distributions which are also shown in figure 5:

$$l | H_0 \sim N\left(\frac{\sqrt{N}A_0}{\sigma_n}, 1\right)$$

 $l | H_1 \sim N\left(\frac{\sqrt{N}A_1}{\sigma_n}, 1\right)$



Define $d \triangleq \frac{\sqrt{N}(A_1 - A_0)}{\sigma_n}$ and $D \triangleq \frac{\sqrt{N}(A_1 + A_0)}{\sigma_n}$. Therefore, the LRT becomes:

$$l(\vec{R}) \triangleq \frac{\sum_{i=1}^{N} r_i}{\sqrt{N}\sigma_n} \gtrsim_{\text{select } H_0}^{\text{select } H_1} \frac{\ln \eta}{d} + \frac{D}{2}$$

<u>Note:</u> For unipolar ASK where $A_0 = 0$ and D = d, the quantity representing average bit energy under $P_0 = P_1 = \frac{1}{2}$ becomes:

$$E_b = \frac{1}{2}(A - 1^2 + A_0^2) = \frac{\sigma_n^2}{4N}(D_2 + d^2)$$

Thus, with (d, D), we identify two important features of this form of data transmission.

a) Separation of the two hypotheses in the l domain;

b) Average energy of the transmitter with respect to the noise power.

Performance probabilities:

$$P_F = \int_{\frac{\ln \eta}{d} + \frac{D}{2}}^{\infty} p(l|H_0) dl$$
$$= \int_{\frac{\ln \eta}{d} + \frac{D}{2}}^{\infty} \left[\frac{1}{2\pi} e^{\left\{ -\frac{(l-\sqrt{N}A_0)^2}{\sigma_n} \right\}} \right] dl$$
$$= erfc^* \left(\frac{\ln \eta}{d} + \frac{D}{2} - \frac{\sqrt{N}A_0}{\sigma_n} \right)$$
$$P_D = \int_{\frac{\ln \eta}{d} + \frac{D}{2}}^{\infty} p(l|H_1) dl$$

Similarly

Property: The threshold η for the likelihood ratio test is given by:

$$\eta = \frac{dp_D}{dP_F}$$

 $= erfc^*\left(rac{\ln\eta}{d} + rac{D}{2} - rac{\sqrt{N}A_1}{\sigma_n}
ight)$

at the operating point of interest. Proof:

$$P_D = \int_{\eta}^{\infty} p(\Lambda | H_1) d\Lambda$$
$$= \int_{\mathbb{Z}_1} p(\vec{R} | H_1) d\vec{R}$$

But, we know:

$$\Lambda(\vec{R}) = \frac{p(\vec{R}|H_1)}{p(\vec{R}|H_0)}$$

or

$$p(\vec{R}|H_1) = \Lambda(\vec{R}).p(\vec{R}|H_0)$$

We substitute this in the expression for P_D :

$$P_D = \int_{\mathbb{Z}_1} \Lambda(\vec{R}) \cdot p(\vec{R} | H_0) d\vec{R}$$

Rewrite the above in terms of $\Lambda | H_0$:

$$P_D = \int_{\eta}^{\infty} \Lambda . p(\Lambda \big| H_0) d\Lambda$$

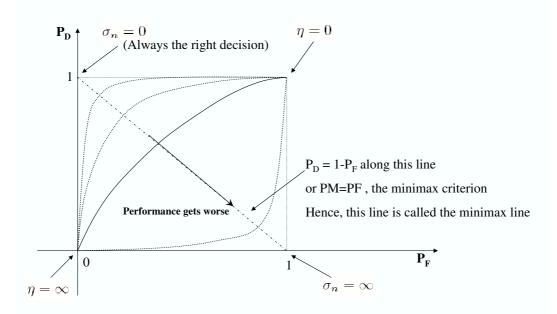


Figure 6.

We also have:

$$P_F = \int_{\eta}^{\infty} p(\Lambda | H_0) d\Lambda$$

Therefore, using Leibnitz rule of differentiation (refer to Papoulis & Pillai, page: 181)

$$\frac{dP_D}{d\eta} = -\eta p(\eta | H_0)$$
$$\frac{dP_F}{d\eta} = -p(\eta | H_0)$$
$$\frac{dP_D/d\eta}{dP_F/d\eta}$$

Finally:

$$= \frac{-\eta p(\eta | H_0)}{-p(\eta | H_0)} = \eta$$
$$\Rightarrow \frac{dP_D}{dP_F} = \eta$$