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Dr. Mehrdad Soumekh

Bayes decision rule (continued)

In the last section we noted that the Bayes decision rule can be written as:
I(R) 20 ik, I (R)

which means that our task is to select the hypothesis with the minimum I;(R).
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Figure 1. Block diagram of the decision process
The above decision rule is re-written as:
> Pi(Chy — Ci)p(R|H;y) Zhes it > Pi(Crmy — Cy)p(R| H;)
J J
After cancelling the common terms, we obtain
(Crom — Conm) Prp(B| Hyp) Zier 25, (Coke — Ciote) Pip(R| Hy) + Z (Cmj — Cij) Pip(R| Hy)
J#m,j#k

Define the ith likelihood function via: .
_ R|H;

a(fy & PEH

p(R|Hp)

Therefore, the test becomes:

(Crin = Conm) P A (B) 2300 125, (Conte — Co) PeAR(R) + D (Ciij — Cij) Py A ()
jEm,#k

e Note that there are

W such inequalities.

e Note that the decision space is the (M — 1) dimensional space of the likelihood function.
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Figure 2. Decision regions
Special cases - Minimum probability of error criterion:-

Cost functions are defined via:

i.e. unit cost function for all wrong decisions.
In this case, the risk function becomes:

j i i
=3 prY /Zp(E|Hj)dﬁ
%,_/

J i#]

Prob[choose H;|H; is true]

Problerror [H is true]

= Z Problerror |H; is true] = P(error)
J
- Thus, minimizing the risk function with C;; = d;; is equivalent to minimizing the overall probability (expected
value) of error percentage.
After substituting C;; = d;; in
Ix(R) Zuox ik, In(R)
we obtain:

— —

P (R) Zhy i*, Pl (R)

Thus, for a given measurement ﬁ, select the hypothesis that maximizes

—

PA{(R),Vi=0,1,---, M —1



Rewrite equation (1) using the log-likelihood function:

— —

InP,, +InA,,(R) 2k &* In P, +InAg(R)
Going back to the original channel pdf’s, we may also write the decision rule via:
Prp(R|Hyn) 235010, Pep(R|Hy)
Dividing both sides by p(R), where p(ﬁ)zszzglp(ﬁ‘HjL we get:

Pmp( _"Hm) ~mnot Hy, Pkp(ﬁ‘Hk>
T =, Znot Hypy =0
p(R) p(R)

. _ p(a)p(bla)
Recall: p(alb) = )

Associate a — H,,, b — R
- p(Hy|R) 220 it p(Hy | R)

e Therefore, the decision rule is to select the hypothesis that yields the maximum a posteriori pdf (i.e. the
probability of a hypothesis given an observation).

e This is called the Maximum A Posteriori Probability (MAP) decision rule.

Summary

Minimum probability of error decision rule and MAP decision rule are the same; they are special cases of the
Bayes decision rule with uniform cost for all incorrect decisions.

Example

Binary decision, i.e M = 2 = only one likelihood function.

(R) (| o) (R)

.". The Bayes decision becomes
=5 Py(Cro — Coo) &
AR >?elec: Hy L
( ) selec Hg Pl(c’ol . 011) 77

7, the threshold is set by the user based on the a priori probabilities (i.e Py and Py = 1 — Py) and the assigned
cost functions.

Receiver
The receiver structure is as shown in figure 3.

Special case

MAP decision rule: substitute Cog = C17 = 0 and Ci9 = Cp1 = 1.
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Log likelihood form:

L(R) 2 InA(R) ze i lnn £ ¢

Tselect H,
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Figure 3. Receiver
where
¢ = Py(Cro — Coo)
P (Co1 — Ch1)
e.g.:
Hy:R=Sy+N
H :R=8S +N
where
So1 S11
- So2 - S12 .
0= . s 01 = . 7]\/v =
Son Sin

Source and channel model

nN

n;’s are independent identically distributed (iid) normal or Gaussian r.v.’s with zero mean and variance o%;

ni ~ N(0,0%), V i.

p(N) =

E(’I’LZTLJ) = 012\;(51‘]‘

N
= im1 ”12

1
ex
(V2mon)N p{ 202

|

So and Sy are deterministic (known) vectors, e.g. samples of two known signals.

The observation pdf:

Hk:ﬁ:§c+]\7;k:0,l

= R|H, is also normal multivariate with mean E(R|H}) = Sj and covariance matrix:

g2 0 -~ 0

n

0 o2 .- 0

Cov =



In this case its pdf is:

|~ 1 SN (ri — Ski)
H) = exr i=1
M | ) (\/%O'N)N P 202
where
T1
- T2
R = .
N
Likelihood function: .
= p(R|Hp)
(R) = ~|
p(R|Hp)
_eap[ = 35is,(ri — Su)* /207
exp[ — oI, (1 — S0i)? /202

Log-likelihood function:

N N
D (ri = 80)®  3ii(ri = 810 | e u

= 20_727’ 20_,'% Tselect Hcl) 5
N 2 2
2im1 2ri(S1i — Soi) — (ST = 56i) < ereet 1,
= 202 Tselect Hy 5
n

Rewrite the above via:
N | L
227’1(511 — Soi) 2 i Eon B Z Sti — B Z Shi
i=1 i=1 =1
Define
N
Ey = Z S2. . energy of S
i=1

N
E 2 Z S3. : energy of S
i=1

and note that vazl 7iSk = IjBTS?c Lc é, S; >, also known as the projection of Sy onto R. The decision equation
becomes:

Tselect Hg

~ 1
(S1 = So)" Rz Son + §(E1 — Ey)

- o ST o

Note that Ey =< Sk, Sk >= Si Sk.

Therefore the projection of R into S; — Sy is the only information required (sufficient statistic) for decision
making.

Unipolar ASK:

0 A
N 0 R A
So = S1=1 .
0 A

To transmit 0 or 1, an ON/OFF signaling scheme is required.
Therefore, the decision rule becomes:

1
Ti(A—O) >select Hy 50'721 + f(NAZ —O)

Tselect Hg 2
i=1
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Figure 5. Continuous domain inversion: Matched filtering

Dividing both sides by N.A
N
1 select H 5‘72 A A
N Z i 2 oteet 1 NA +§ =7
7=1 N~
" bias term

R: avg value of R

>select Hy
R Tselect Hg ry

Note that foE the decision, it is sufficient to reduce the processing by using the scalar R instead of the N-
dimensi9nal R.
Pdf of R is given by:

— 0'2
Hy RNN(O,W"),rlzo—&—nl
_ 0'2
H, RNN(A,W”),TZ:A—H%
= (R|H)*;ea: { RQ]
p 0) — /7271'0—" D Zﬁ
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Special case: MAP or min. probability of error criterion with Py = P; = % yields:

Probability of false alarm:

Probability of miss:
v _ _
Py = Perror|Hy) = / p(R|H1)dR

(A-r)

=erfc' (=)

2

Probability of detection:
PDZI—P]\/IZ/ p(R|H1)dR
¥

Probability of error:
Pg = Py.P(error|Hy) + Py.P(error|Hy)

Bipolar ASK:

—A A
. —A . A
SO = : sy 01 =

—A A

= Fy = NA2?, E, = NA?. Therefore, the decision equation becomes:

N

1
Do nilA— (—A) 2 €0k + S (NA? - NA?)
=1
or N
24 p; i go?
=1
or ,
D select go-n A
R2050m san =0
Pdf of R is given by:
2
HO : RN N(_Avol)vri =0+n,
N
_ o2
H, :RNN(A,W"),” =A+n;



1 R—5)?
= DRI ) = | - E
71'7N 2 n

where
g —A ; under Hy
N A ; under H,

For v = 0 or MAP or min probability of error with C;; = d;;,
P(error|Hy) = P(error|Hy) : Bipolar < P(error|Hy) = P(error|Hy) : Unipolar Average transmitted energy:

Ey, £ PyEy + P Ey

FOI‘ P0:P1 :%
5 10+1iNA%= NTAQ : unipolar
b iNA?+iNA?=NA% : bipolar

Bipolar is better in probability of error performance since we use more energy in the transmission. Even if we
adjust the A value to use the same average energy in both cases, still the bipolar performs better. The only
scenario where the unipolar scheme is preferable are the asynchronous (non-coherent) systems.

Sufficient statistic

e In the previous section, we formulated testing of hypotheses based on an N-dimensional observed vector

R.

e In an example, we demonstrated how the average value of the elements of R is sufficient for the receiver to
make a decision.

o We now present the general concept for what is referred to as sufficient statistic in decision theory.

Consider the transformation of E denoted by:
Wit = T[éle]

where L < N; thus the transformation is not necessarily reversible. For the time being assume W to be of
dimension N x 1 and that the inverse of T'[.] exists.

We partition W into two parts:
W1 = [Wirxi, Won—r)x1]

We can write the likelihood function via:

We also know that if y = g(z), then

IfX—>V_[7andY—>R', then
p(W|H;)
J

where J is the Jacobian of the transformation from W to K. The Jacobian function is invariant of H;. Substitute
in the likelihood function in terms of functions of W.

P(E‘Hz) =



p(W|H,)

— J
p(W|Ho)

J

p(W|H,)

p(W|Hy)

Thus the test can be performed via processing the likelihood function for w. Using the Bayes theorem, we have:

p(W|H,) = p([Wh, Wa] | H;)

= p(W1|H;).p(Wa|W1, H;)
Suppose there exists a partitioning of W such that

p(Ws|Ws, Hy) = p(Wa|Wh)
i.e. it is invariant in the hypotheses. Using this in the likelihood function

Ag(R) = A ()
_ p(Wi|Hy).p(Wa| W1, Hy)
p(W1|Ho).p(W2|Wa, Ho)

_ p(Wh|H) &
p(Wi|Ho)

Ay (W) 230 b n
i.e the test is invariant in Wg. In this case Wl is called sufficient statistic to construct the test.
e.g.: Binary hypothesis testing
Ho Ty =N
H1 LTy =Ny + A

where i = 1,2,---, N and n; ~ N(0,02) and i.i.d V i. A is a constant. The sufficient statistic is w; = Zfil ;.
It does not matter what Wg is.

1 1 1 1
N N N N 1
W o 1 0 --- 0 T9
w=|l"1]_l0 0 1 - 0 rs
=] .
0O 0 O 1 Tn

T[]

c.g. R . .
H01R250+N

Hlﬁ:;s;'1+]\_f'

where N ~ N (0,02). Sp and S; are constants. In that case, we showed that the decision is based on

I(R) £ (S1 — So)Tﬁ Zseleet i threshold

Tselect H

The threshold is a scalar that is sufficient statistic for this detection problem.



