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Bayes decision rule (continued)

In the last section we noted that the Bayes decision rule can be written as:

Ik(~R) ≷not Hk
not Hm

Im(~R)

which means that our task is to select the hypothesis with the minimum Ii(~R).
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Figure 1. Block diagram of the decision process

The above decision rule is re-written as:
∑

j

Pj(Ckj − Cjj)p(~R
∣∣Hj) ≷not Hk

not Hm

∑

j

Pj(Cmj − Cjj)p(~R
∣∣Hj)

After cancelling the common terms, we obtain

(Ckm − Cmm)Pmp(~R
∣∣Hm) ≷not Hk

not Hm
(Cmk − Ckk)Pkp(~R

∣∣Hk) +
∑

j 6=m,j 6=k

(Cmj − Ckj)Pjp(~R
∣∣Hj)

Define the ith likelihood function via:

Λi(~R) ,
p(~R

∣∣Hi)

p(~R
∣∣H0)

Therefore, the test becomes:

(Ckm − Cmm)PmΛm(~R) ≷not Hk
not Hm

(Cmk − Ckk)PkΛk(~R) +
∑

j 6=m,j 6=k

(Cmj − Ckj)PjΛj(~R)

• Note that there are M(M−1)
2 such inequalities.

• Note that the decision space is the (M − 1) dimensional space of the likelihood function.
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Figure 2. Decision regions

Special cases - Minimum probability of error criterion:-

Cost functions are defined via:

Cij =
{

1 ; i 6= j
0 ; i = j

i.e. unit cost function for all wrong decisions.
In this case, the risk function becomes:

R =
∑

j

Pj

∑

i

Cij

∫

Zi

p(~R
∣∣Hj)d~R

=
∑

j

Pj

∑

i 6=j

∫

Zi

p(~R
∣∣Hj)d~R

︸ ︷︷ ︸
Prob[choose Hi

�����Hj is true]

︸ ︷︷ ︸
Prob[error

�����Hj is true]

=
∑

j

Prob[error
∣∣Hj is true] = P (error)

- Thus, minimizing the risk function with Cij = δij is equivalent to minimizing the overall probability (expected
value) of error percentage.
After substituting Cij = δij in

Ik(~R) ≷not Hk
not Hm

Im(~R)

we obtain:
PmΛm(~R) ≷not Hk

not Hm
PkΛk(~R)

Pmp(~R
∣∣Hm) ≷not Hk

not Hm
Pkp(~R

∣∣Hk) (1)

Thus, for a given measurement ~R, select the hypothesis that maximizes

PiΛi(~R), ∀i = 0, 1, · · · ,M − 1



Rewrite equation (1) using the log-likelihood function:

ln Pm + ln Λm(~R) ≷not Hk
not Hm

ln Pk + ln Λk(~R)

Going back to the original channel pdf’s, we may also write the decision rule via:

Pmp(~R
∣∣Hm) ≷not Hk

not Hm
Pkp(~R

∣∣Hk)

Dividing both sides by p(~R), where p(~R)=
∑M−1

j=0 p(~R
∣∣Hj), we get:

Pmp(~R
∣∣Hm)

p(~R)
≷not Hk

not Hm

Pkp(~R
∣∣Hk)

p(~R)

Recall: p(a|b) = p(a)p(b|a)
p(b)

Associate a → Hm, b → ~R

∴ p(Hm

∣∣~R) ≷not Hk
not Hm

p(Hk

∣∣~R)

• Therefore, the decision rule is to select the hypothesis that yields the maximum a posteriori pdf (i.e. the
probability of a hypothesis given an observation).

• This is called the Maximum A Posteriori Probability (MAP) decision rule.

Summary
Minimum probability of error decision rule and MAP decision rule are the same; they are special cases of the
Bayes decision rule with uniform cost for all incorrect decisions.

Example
Binary decision, i.e M = 2 ⇒ only one likelihood function.

Λ1(~R) =
p(~R

∣∣H1)

p(~R
∣∣H0)

, Λ(~R)

∴ The Bayes decision becomes

Λ(~R) ≷select H1
select H0

P0(C10 − C00)
P1(C01 − C11)

, η

η, the threshold is set by the user based on the a priori probabilities (i.e P0 and P1 = 1− P0) and the assigned
cost functions.

Receiver
The receiver structure is as shown in figure 3.

Special case

MAP decision rule: substitute C00 = C11 = 0 and C10 = C01 = 1.

⇒ η =
P0(1− 0)
P1(1− 0)

=
P0

P1
=

P0

(1− P0)

Log likelihood form:

L(~R) , lnΛ(~R) ≷select H1
select H0

ln η , ξ
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Figure 3. Receiver

where

ξ =
P0(C10 − C00)
P1(C01 − C11)

e.g.:

H0 : ~R = ~S0 + ~N

H1 : ~R = ~S1 + ~N

where

~S0 =




S01

S02

...
S0N


 , ~S1 =




S11

S12

...
S1N


 , ~N =




n1

n2

...
nN




Source and channel model

ni’s are independent identically distributed (iid) normal or Gaussian r.v.’s with zero mean and variance σ2
N ;

ni ∼ N(0, σ2
N ), ∀ i.

E(ninj) = σ2
Nδij

E(ni) = 0

p( ~N) =
1

(
√

2πσN )N
exp

[−∑N
i=1 n2

i

2σ2
n

]

S0 and S1 are deterministic (known) vectors, e.g. samples of two known signals.

The observation pdf:
Hk : ~R = ~Sk + ~N ; k = 0, 1

⇒ ~R|Hk is also normal multivariate with mean E(~R|Hk) = ~Sk and covariance matrix:

Cov =




σ2
n 0 · · · 0
0 σ2

n · · · 0
. . .

0 0 · · · σ2
n






In this case its pdf is:

p( ~~R
∣∣Hk) =

1
(
√

2πσN )N
exp

[−∑N
i=1(ri − Ski)2

2σ2
n

]

where

~R =




r1

r2

...
rN




Likelihood function:

Λ(~R) =
p(~R

∣∣H1)

p(~R
∣∣H0)

=
exp

[−∑N
i=1(ri − S1i)2

/
2σ2

n]

exp
[−∑N

i=1(ri − S0i)2
/
2σ2

n]

Log-likelihood function:
L(~R) = ln (Λ~R)

⇒
∑N

i=1(ri − S0i)2

2σ2
n

−
∑N

i=1(ri − S1i)2

2σ2
n

≷select H1
select H0

ξ

⇒
∑N

i=1 2ri(S1i − S0i)− (S2
1i − S2

0i)
2σ2

n

≷select H1
select H0

ξ

Rewrite the above via:
N∑

i=1

2ri(S1i − S0i) ≷select H1
select H0

ξσ2
n +

1
2

N∑

i=1

S2
1i −

1
2

N∑

i=1

S2
0i

Define

E0 ,
N∑

i=1

S2
0i : energy of ~S0

E1 ,
N∑

i=1

S2
1i : energy of ~S1

and note that
∑N

i=1 riSki = ~RT ~Sk ,< ~R, ~Sk >, also known as the projection of Sk onto ~R. The decision equation
becomes:

(S1 − S0)T ~R ≷select H1
select H0

ξσ2
n +

1
2
(E1 − E0)

Note that Ek =< ~Sk, ~Sk >= ~Sk
T ~Sk.

Therefore the projection of ~R into ~S1 − ~S0 is the only information required (sufficient statistic) for decision
making.

Unipolar ASK:

~S0 =




0
0
...
0


 , ~S1 =




A
A
...
A




To transmit 0 or 1, an ON/OFF signaling scheme is required.
Therefore, the decision rule becomes:

N∑

i=1

ri(A− 0) ≷select H1
select H0

ξσ2
n +

1
2
(NA2 − 0)
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Figure 5. Continuous domain inversion: Matched filtering

Dividing both sides by N.A

1
N

N∑

i=1

ri

︸ ︷︷ ︸
R̄: avg value of ~R

≷select H1
select H0

ξσ2
n

NA︸︷︷︸
bias term

+
A

2
, γ

R̄ ≷select H1
select H0

γ

Note that for the decision, it is sufficient to reduce the processing by using the scalar R̄ instead of the N -
dimensional ~R.
Pdf of R̄ is given by:

H0 : R̄ ∼ N(0,
σ2

n

N
), ri = 0 + ni

H1 : R̄ ∼ N(A,
σ2

n

N
), ri = A + ni

⇒ p(R̄
∣∣H0) =

1√
2π σn√

N

exp

[
− R̄2

2σ2
n

N

]



p(R̄
∣∣H1) =

1√
2π σn√

N

exp

[
− (R̄−A)2

2σ2
n

N

]

Special case: MAP or min. probability of error criterion with P0 = P1 = 1
2 yields:

η =
P0(C10 − C00)
P1(C01 − C11)

= 1 ⇒ ξ = 0

γ =
A

2
Probability of false alarm:

PF = P (error|H0) =
∫ ∞

γ

p(R̄
∣∣H0)dR̄

= erfc∗(
γ
σn√
N

)

Probability of miss:

PM = P (error|H1) =
∫ γ

−∞
p(R̄

∣∣H1)dR̄

= erfc∗(
(A− r)

σn√
N

)

Probability of detection:

PD = 1− PM =
∫ ∞

γ

p(R̄
∣∣H1)dR̄

Probability of error:
PE = P0.P (error

∣∣H0) + P1.P (error
∣∣H1)

Bipolar ASK:

~S0 =




−A
−A
...
−A


 , ~S1 =




A
A
...
A




⇒ E0 = NA2, E1 = NA2. Therefore, the decision equation becomes:

N∑

i=1

ri[A− (−A)] ≷select H1
select H0

ξσ2
n +

1
2
(NA2 −NA2)

or

2A

N∑

i=1

ri ≷select H1
select H0

ξσ2
n

or

R̄ ≷select H1
select H0

ξσ2
n

2AN
, γ

Pdf of R̄ is given by:

H0 : R̄ ∼ N(−A,
σ2

n

N
), ri = 0 + ni

H1 : R̄ ∼ N(A,
σ2

n

N
), ri = A + ni



⇒ p(R̄
∣∣Hk) =

1√
2π σn√

N

exp

[
− (R̄− S)2

2σ2
n

N

]

where

S =
{ −A ; under H0

A ; under H1

For γ = 0 or MAP or min probability of error with Cij = δij ,
P (error|H0) = P (error|H1) : Bipolar < P (error|H0) = P (error|H1) : Unipolar Average transmitted energy:

Eb , P0E0 + P1E1

For P0 = P1 = 1
2

Eb =
{

1
2 .0 + 1

2NA2 = NA2

2 : unipolar
1
2NA2 + 1

2NA2 = NA2 : bipolar

Bipolar is better in probability of error performance since we use more energy in the transmission. Even if we
adjust the A value to use the same average energy in both cases, still the bipolar performs better. The only
scenario where the unipolar scheme is preferable are the asynchronous (non-coherent) systems.

Sufficient statistic

• In the previous section, we formulated testing of hypotheses based on an N -dimensional observed vector
~R.

• In an example, we demonstrated how the average value of the elements of ~R is sufficient for the receiver to
make a decision.

• We now present the general concept for what is referred to as sufficient statistic in decision theory.

Consider the transformation of ~R denoted by:

~WL×1 = T [~RN×1]

where L ≤ N ; thus the transformation is not necessarily reversible. For the time being assume W to be of
dimension N × 1 and that the inverse of T [.] exists.
We partition ~W into two parts:

~WN×1 =
[

~W1L×1, ~W2(N−L)×1]

We can write the likelihood function via:

Λ~R , p(~R|H1)

p(~R|H0)

We also know that if y = g(x), then

pY (y) =
pX(x)
dg(x)

dx

If X → ~W and Y → ~R, then

p(~R|Hi) =
p( ~W |Hi)

J

where J is the Jacobian of the transformation from ~W to ~R. The Jacobian function is invariant of Hi. Substitute
in the likelihood function in terms of functions of ~W .

Λ~R =
p(~R|H1)

p(~R|H0)



=
p( ~W |H1)

J

p( ~W |H0)
J

=
p( ~W |H1)

p( ~W |H0)

Thus the test can be performed via processing the likelihood function for ~W . Using the Bayes theorem, we have:

p( ~W |Hi) = p([ ~W1, ~W2]|Hi)

= p( ~W1|Hi).p( ~W2| ~W1, Hi)

Suppose there exists a partitioning of ~W such that

p( ~W2| ~W2,Hi) = p( ~W2| ~W1)

i.e. it is invariant in the hypotheses. Using this in the likelihood function

Λ~R(~R) = Λ ~W ( ~W )

=
p( ~W1|H1).p( ~W2| ~W1, H1)

p( ~W1|H0).p( ~W2| ~W2, H0)

=
p( ~W1|H1)

p( ~W1|H0)
, Λ ~W1

( ~W1) ≷select H1
select H0

η

i.e the test is invariant in ~W2. In this case ~W1 is called sufficient statistic to construct the test.
e.g.: Binary hypothesis testing

H0 : ri = ni

H1 : ri = ni + A

where i = 1, 2, · · · , N and ni ∼ N(0, σ2
n) and i.i.d ∀ i. A is a constant. The sufficient statistic is w1 =

∑N
i=1 ri.

It does not matter what ~W2 is.

~W =
[

~W1

~W2

]
=




1
N

1
N

1
N · · · 1

N
0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 1




︸ ︷︷ ︸
T [.]




r1

r2

r3

...
rn




e.g.
H0 : ~R = ~S0 + ~N

H1 : ~R = ~S1 + ~N

where ~N ∼ N(0, σ2
n). S0 and S1 are constants. In that case, we showed that the decision is based on

l(R) , (S1 − S0)T ~R ≷select H1
select H0

threshold

The threshold is a scalar that is sufficient statistic for this detection problem.


