EE 631: Estimation and Detection Part 2

Dr. Mehrdad Soumekh

Bayes decision rule (continued)

In the last section we noted that the Bayes decision rule can be written as:

$$
I_{k}(\vec{R}) \gtrless \gtrless_{\text {not }}^{\text {not } H_{m}} H_{m} I_{m}(\vec{R})
$$

which means that our task is to select the hypothesis with the minimum $I_{i}(\vec{R})$.

Figure 1. Block diagram of the decision process
The above decision rule is re-written as:

$$
\sum_{j} P_{j}\left(C_{k j}-C_{j j}\right) p\left(\vec{R} \mid H_{j}\right) \gtrless \underset{\substack{\text { not } H_{m}}}{\substack{\text { not } H_{k}}} \sum_{j} P_{j}\left(C_{m j}-C_{j j}\right) p\left(\vec{R} \mid H_{j}\right)
$$

After cancelling the common terms, we obtain

$$
\left(C_{k m}-C_{m m}\right) P_{m} p\left(\vec{R} \mid H_{m}\right) \underset{\substack{\text { not } H_{m}}}{\text { not } H_{k}}\left(C_{m k}-C_{k k}\right) P_{k} p\left(\vec{R} \mid H_{k}\right)+\sum_{j \neq m, j \neq k}\left(C_{m j}-C_{k j}\right) P_{j} p\left(\vec{R} \mid H_{j}\right)
$$

Define the i th likelihood function via:

$$
\Lambda_{i}(\vec{R}) \triangleq \frac{p\left(\vec{R} \mid H_{i}\right)}{p\left(\vec{R} \mid H_{0}\right)}
$$

Therefore, the test becomes:

$$
\left(C_{k m}-C_{m m}\right) P_{m} \Lambda_{m}(\vec{R}) \gtrless \begin{gathered}
\text { not } H_{m} \\
\text { not } H_{k} \\
\hline
\end{gathered}\left(C_{m k}-C_{k k}\right) P_{k} \Lambda_{k}(\vec{R})+\sum_{j \neq m, j \neq k}\left(C_{m j}-C_{k j}\right) P_{j} \Lambda_{j}(\vec{R})
$$

- Note that there are $\frac{M(M-1)}{2}$ such inequalities.
- Note that the decision space is the $(M-1)$ dimensional space of the likelihood function.

Figure 2. Decision regions

Special cases - Minimum probability of error criterion:-

Cost functions are defined via:

$$
C_{i j}= \begin{cases}1 & ; i \neq j \\ 0 & ; i=j\end{cases}
$$

i.e. unit cost function for all wrong decisions.

In this case, the risk function becomes:

$$
\begin{gathered}
\mathbb{R}=\sum_{j} P_{j} \sum_{i} C_{i j} \int_{\mathbb{Z}_{i}} p\left(\vec{R} \mid H_{j}\right) d \vec{R} \\
=\sum_{j} P_{j} \sum_{i \neq j} \underbrace{\int_{\mathbb{Z}_{i}} p\left(\vec{R} \mid H_{j}\right) d \vec{R}}_{\text {Prob[choose } H_{i} \mid H_{j} \text { is true] }} \\
\underbrace{P_{j} \operatorname{Prob}\left[\text { error } \mid H_{j} \text { is true }\right]=P(\text { error })}_{\text {Prob }\left[\text { error } \mid H_{j}\right. \text { is true] }}
\end{gathered}
$$

- Thus, minimizing the risk function with $C_{i j}=\delta_{i j}$ is equivalent to minimizing the overall probability (expected value) of error percentage.
After substituting $C_{i j}=\delta_{i j}$ in

$$
I_{k}(\vec{R}) \gtrless \gtrless_{\text {not } H_{m}}^{\text {not } H_{k}} I_{m}(\vec{R})
$$

we obtain:

$$
\begin{gather*}
P_{m} \Lambda_{m}(\vec{R}) \underset{\substack{\text { not } H_{m}}}{\gtrless \text { not } H_{k}} P_{k} \Lambda_{k}(\vec{R}) \\
P_{m} p\left(\vec{R} \mid H_{m}\right)
\end{gather*} \underset{\substack{\text { not } H_{k} \tag{1}\\
\text { not } H_{m}}}{ } P_{k} p\left(\vec{R} \mid H_{k}\right) .
$$

Thus, for a given measurement \vec{R}, select the hypothesis that maximizes

$$
P_{i} \Lambda_{i}(\vec{R}), \forall i=0,1, \cdots, M-1
$$

Rewrite equation (1) using the log-likelihood function:

$$
\ln P_{m}+\ln \Lambda_{m}(\vec{R}) \gtrless_{\text {not } H_{m}}^{\text {not } H_{k}} \ln P_{k}+\ln \Lambda_{k}(\vec{R})
$$

Going back to the original channel pdf's, we may also write the decision rule via:

$$
P_{m} p\left(\vec{R} \mid H_{m}\right) \underset{\substack{\text { not } H_{k} \\ \text { not } H_{m}}}{ } P_{k} p\left(\vec{R} \mid H_{k}\right)
$$

Dividing both sides by $p(\vec{R})$, where $p(\vec{R})=\sum_{j=0}^{M-1} p\left(\vec{R} \mid H_{j}\right)$, we get:

Recall: $p(a \mid b)=\frac{p(a) p(b \mid a)}{p(b)}$
Associate $a \rightarrow H_{m}, b \rightarrow \vec{R}$

$$
\therefore p\left(H_{m} \mid \vec{R}\right) \gtrless \underset{\text { not } H_{m}}{\text { not } H_{k}} p\left(H_{k} \mid \vec{R}\right)
$$

- Therefore, the decision rule is to select the hypothesis that yields the maximum a posteriori pdf (i.e. the probability of a hypothesis given an observation).
- This is called the Maximum A Posteriori Probability (MAP) decision rule.

Summary

Minimum probability of error decision rule and MAP decision rule are the same; they are special cases of the Bayes decision rule with uniform cost for all incorrect decisions.
Example
Binary decision, i.e $M=2 \Rightarrow$ only one likelihood function.

$$
\Lambda_{1}(\vec{R})=\frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)} \triangleq \Lambda(\vec{R})
$$

\therefore The Bayes decision becomes

$$
\Lambda(\vec{R}) \underset{\text { select } H_{0}}{\text { select } H_{1}} \frac{P_{0}\left(C_{10}-C_{00}\right)}{P_{1}\left(C_{01}-C_{11}\right)} \triangleq \eta
$$

η, the threshold is set by the user based on the a priori probabilities (i.e P_{0} and $P_{1}=1-P_{0}$) and the assigned cost functions.

Receiver

The receiver structure is as shown in figure 3 .
Special case

MAP decision rule: substitute $C_{00}=C_{11}=0$ and $C_{10}=C_{01}=1$.

$$
\Rightarrow \eta=\frac{P_{0}(1-0)}{P_{1}(1-0)}=\frac{P_{0}}{P_{1}}=\frac{P_{0}}{\left(1-P_{0}\right)}
$$

Log likelihood form:

$$
L(\vec{R}) \triangleq \ln \Lambda(\vec{R}) \underset{\text { select } H_{0}}{\gtrless \text { selet } H_{1}} \ln \eta \triangleq \xi
$$

Figure 3. Receiver
where

$$
\xi=\frac{P_{0}\left(C_{10}-C_{00}\right)}{P_{1}\left(C_{01}-C_{11}\right)}
$$

e.g.:

$$
\begin{aligned}
& H_{0}: \vec{R}=\overrightarrow{S_{0}}+\vec{N} \\
& H_{1}: \vec{R}=\overrightarrow{S_{1}}+\vec{N}
\end{aligned}
$$

where

$$
\overrightarrow{S_{0}}=\left[\begin{array}{c}
S_{01} \\
S_{02} \\
\vdots \\
S_{0 N}
\end{array}\right], \overrightarrow{S_{1}}=\left[\begin{array}{c}
S_{11} \\
S_{12} \\
\vdots \\
S_{1 N}
\end{array}\right], \vec{N}=\left[\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{N}
\end{array}\right]
$$

Source and channel model

n_{i} 's are independent identically distributed (iid) normal or Gaussian r.v.'s with zero mean and variance σ_{N}^{2}; $n_{i} \sim N\left(0, \sigma_{N}^{2}\right), \forall i$.

$$
\begin{gathered}
E\left(n_{i} n_{j}\right)=\sigma_{N}^{2} \delta_{i j} \\
E\left(n_{i}\right)=0 \\
p(\vec{N})=\frac{1}{\left(\sqrt{2 \pi} \sigma_{N}\right)^{N}} \exp \left[\frac{-\sum_{i=1}^{N} n_{i}^{2}}{2 \sigma_{n}^{2}}\right]
\end{gathered}
$$

S_{0} and S_{1} are deterministic (known) vectors, e.g. samples of two known signals.

The observation pdf:

$$
H_{k}: \vec{R}=\vec{S}_{k}+\vec{N} ; k=0,1
$$

$\Rightarrow \vec{R} \mid H_{k}$ is also normal multivariate with mean $E\left(\vec{R} \mid H_{k}\right)=\overrightarrow{S_{k}}$ and covariance matrix:

$$
\operatorname{Cov}=\left[\begin{array}{cccc}
\sigma_{n}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{n}^{2} & \cdots & 0 \\
& & \ddots & \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

In this case its pdf is:

$$
p\left(\vec{R} \mid \vec{H}_{k}\right)=\frac{1}{\left(\sqrt{2 \pi} \sigma_{N}\right)^{N}} \exp \left[\frac{-\sum_{i=1}^{N}\left(r_{i}-S_{k i}\right)^{2}}{2 \sigma_{n}^{2}}\right]
$$

where

$$
\vec{R}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{N}
\end{array}\right]
$$

Likelihood function:

$$
\begin{gathered}
\Lambda(\vec{R})=\frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)} \\
=\frac{\exp \left[-\sum_{i=1}^{N}\left(r_{i}-S_{1 i}\right)^{2} / 2 \sigma_{n}^{2}\right]}{\exp \left[-\sum_{i=1}^{N}\left(r_{i}-S_{0 i}\right)^{2} / 2 \sigma_{n}^{2}\right]}
\end{gathered}
$$

Log-likelihood function:

$$
\begin{gathered}
L(\vec{R})=\ln (\Lambda \vec{R}) \\
\Rightarrow \frac{\sum_{i=1}^{N}\left(r_{i}-S_{0 i}\right)^{2}}{2 \sigma_{n}^{2}}-\frac{\sum_{i=1}^{N}\left(r_{i}-S_{1 i}\right)^{2}}{2 \sigma_{n}^{2}} \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \xi \\
\Rightarrow \\
\frac{\sum_{i=1}^{N} 2 r_{i}\left(S_{1 i}-S_{0 i}\right)-\left(S_{1 i}^{2}-S_{0 i}^{2}\right)}{2 \sigma_{n}^{2}} \gtrless_{\text {select } H_{0}}^{\text {select } H_{1}} \xi
\end{gathered}
$$

Rewrite the above via:

$$
\sum_{i=1}^{N} 2 r_{i}\left(S_{1 i}-S_{0 i}\right) \gtrless \underset{\text { select } H_{0}}{\text { select } H_{1}} \xi \sigma_{n}^{2}+\frac{1}{2} \sum_{i=1}^{N} S_{1 i}^{2}-\frac{1}{2} \sum_{i=1}^{N} S_{0 i}^{2}
$$

Define

$$
\begin{aligned}
& E_{0} \triangleq \sum_{i=1}^{N} S_{0 i}^{2}: \text { energy of } \overrightarrow{S_{0}} \\
& E_{1} \triangleq \sum_{i=1}^{N} S_{1 i}^{2}: \text { energy of } \overrightarrow{S_{1}}
\end{aligned}
$$

and note that $\sum_{i=1}^{N} r_{i} S_{k i}=\vec{R}^{T} \vec{S}_{k} \triangleq<\vec{R}, \overrightarrow{S_{k}}>$, also known as the projection of S_{k} onto \vec{R}. The decision equation becomes:

$$
\left(S_{1}-S_{0}\right)^{T} \vec{R} \underset{\text { select } H_{0}}{\text { select } H_{1}} \xi \sigma_{n}^{2}+\frac{1}{2}\left(E_{1}-E_{0}\right)
$$

Note that $E_{k}=<\overrightarrow{S_{k}}, \overrightarrow{S_{k}}>={\overrightarrow{S_{k}}}^{T} \overrightarrow{S_{k}}$.
Therefore the projection of \vec{R} into $\vec{S}_{1}-\overrightarrow{S_{0}}$ is the only information required (sufficient statistic) for decision making.
Unipolar ASK:

$$
\overrightarrow{S_{0}}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right], \overrightarrow{S_{1}}=\left[\begin{array}{c}
A \\
A \\
\vdots \\
A
\end{array}\right]
$$

To transmit 0 or 1 , an ON/OFF signaling scheme is required.
Therefore, the decision rule becomes:

Figure 5. Continuous domain inversion: Matched filtering

Dividing both sides by N.A

$$
\underbrace{\frac{\xi \sigma_{n}^{2}}{N A}}_{\text {avg value of } \vec{R} \underset{\substack{\text { select } H_{1}}}{\frac{1}{N} \sum_{i=1}^{N} r_{i}} \underset{\text { bias term }}{\substack{\text { select } H_{0}}} \underbrace{\text { select } H_{1}}_{\text {select } H_{0}}<}+\frac{A}{2} \triangleq \gamma
$$

Note that for the decision, it is sufficient to reduce the processing by using the scalar \bar{R} instead of the N dimensional \vec{R}.
Pdf of \bar{R} is given by:

$$
\begin{gathered}
H_{0}: \bar{R} \sim N\left(0, \frac{\sigma_{n}^{2}}{N}\right), r_{i}=0+n_{i} \\
H_{1}: \bar{R} \sim N\left(A, \frac{\sigma_{n}^{2}}{N}\right), r_{i}=A+n_{i} \\
\Rightarrow
\end{gathered} p\left(\bar{R} \mid H_{0}\right)=\frac{1}{\sqrt{2 \pi} \frac{\sigma_{n}}{\sqrt{N}}} \exp \left[-\frac{\bar{R}^{2}}{2 \frac{\sigma_{n}^{2}}{N}}\right]
$$

$$
p\left(\bar{R} \mid H_{1}\right)=\frac{1}{\sqrt{2 \pi} \frac{\sigma_{n}}{\sqrt{N}}} \exp \left[-\frac{(\bar{R}-A)^{2}}{2 \frac{\sigma_{n}^{2}}{N}}\right]
$$

$\underline{\text { Special case: MAP or min. probability of error criterion with } P_{0}=P_{1}=\frac{1}{2} \text { yields: }}$

$$
\begin{gathered}
\eta=\frac{P_{0}\left(C_{10}-C_{00}\right)}{P_{1}\left(C_{01}-C_{11}\right)}=1 \Rightarrow \xi=0 \\
\gamma=\frac{A}{2}
\end{gathered}
$$

Probability of false alarm:

$$
\begin{gathered}
P_{F}=P\left(\text { error } \mid H_{0}\right)=\int_{\gamma}^{\infty} p\left(\bar{R} \mid H_{0}\right) d \bar{R} \\
=\operatorname{erfc} c^{*}\left(\frac{\gamma}{\frac{\sigma_{n}}{\sqrt{N}}}\right)
\end{gathered}
$$

Probability of miss:

$$
\begin{gathered}
P_{M}=P\left(\operatorname{error} \mid H_{1}\right)=\int_{-\infty}^{\gamma} p\left(\bar{R} \mid H_{1}\right) d \bar{R} \\
=\operatorname{erfc} c^{*}\left(\frac{(A-r)}{\frac{\sigma_{n}}{\sqrt{N}}}\right)
\end{gathered}
$$

Probability of detection:

$$
P_{D}=1-P_{M}=\int_{\gamma}^{\infty} p\left(\bar{R} \mid H_{1}\right) d \bar{R}
$$

Probability of error:

$$
P_{E}=P_{0} \cdot P\left(\text { error } \mid H_{0}\right)+P_{1} \cdot P\left(\text { error } \mid H_{1}\right)
$$

Bipolar ASK:

$$
\overrightarrow{S_{0}}=\left[\begin{array}{c}
-A \\
-A \\
\vdots \\
-A
\end{array}\right], \overrightarrow{S_{1}}=\left[\begin{array}{c}
A \\
A \\
\vdots \\
A
\end{array}\right]
$$

$\Rightarrow E_{0}=N A^{2}, E_{1}=N A^{2}$. Therefore, the decision equation becomes:

$$
\sum_{i=1}^{N} r_{i}[A-(-A)] \gtrless \underset{\text { select } H_{0}}{\text { select } H_{1}} \xi \sigma_{n}^{2}+\frac{1}{2}\left(N A^{2}-N A^{2}\right)
$$

or
or

$$
\bar{R} \underset{\text { select } H_{0}}{\text { select } H_{1}} \frac{\xi \sigma_{n}^{2}}{2 A N} \triangleq \gamma
$$

Pdf of \bar{R} is given by:

$$
\begin{gathered}
H_{0}: \bar{R} \sim N\left(-A, \frac{\sigma_{n}^{2}}{N}\right), r_{i}=0+n_{i} \\
H_{1}: \bar{R} \sim N\left(A, \frac{\sigma_{n}^{2}}{N}\right), r_{i}=A+n_{i}
\end{gathered}
$$

$$
\Rightarrow p\left(\bar{R} \mid H_{k}\right)=\frac{1}{\sqrt{2 \pi} \frac{\sigma_{n}}{\sqrt{N}}} \exp \left[-\frac{(\bar{R}-S)^{2}}{2 \frac{\sigma_{n}^{2}}{N}}\right]
$$

where

$$
S=\left\{\begin{array}{cc}
-A & ; \text { under } H_{0} \\
A & ; \text { under } H_{1}
\end{array}\right.
$$

For $\gamma=0$ or MAP or min probability of error with $C_{i j}=\delta_{i j}$,
$P\left(\right.$ error $\left.\mid H_{0}\right)=P\left(\right.$ error $\left.\mid H_{1}\right):$ Bipolar $<P\left(\right.$ error $\left.\mid H_{0}\right)=P\left(\right.$ error $\left.\mid H_{1}\right):$ Unipolar Average transmitted energy:

$$
E_{b} \triangleq P_{0} E_{0}+P_{1} E_{1}
$$

For $P_{0}=P_{1}=\frac{1}{2}$

$$
E_{b}=\left\{\begin{array}{cl}
\frac{1}{2} \cdot 0+\frac{1}{2} N A^{2}=\frac{N A^{2}}{2} & : \text { unipolar } \\
\frac{1}{2} N A^{2}+\frac{1}{2} N A^{2}=N A^{2} & \text { : bipolar }
\end{array}\right.
$$

Bipolar is better in probability of error performance since we use more energy in the transmission. Even if we adjust the A value to use the same average energy in both cases, still the bipolar performs better. The only scenario where the unipolar scheme is preferable are the asynchronous (non-coherent) systems.

Sufficient statistic

- In the previous section, we formulated testing of hypotheses based on an N-dimensional observed vector \vec{R}.
- In an example, we demonstrated how the average value of the elements of \vec{R} is sufficient for the receiver to make a decision.
- We now present the general concept for what is referred to as sufficient statistic in decision theory.

Consider the transformation of \vec{R} denoted by:

$$
\vec{W}_{L \times 1}=T\left[\vec{R}_{N \times 1}\right]
$$

where $L \leq N$; thus the transformation is not necessarily reversible. For the time being assume W to be of dimension $N \times 1$ and that the inverse of $T[$.$] exists.$
We partition \vec{W} into two parts:

$$
\vec{W}_{N \times 1}=\left[\vec{W}_{1 L \times 1}, \vec{W}_{2(N-L) \times 1}\right]
$$

We can write the likelihood function via:

$$
\Lambda \vec{R} \triangleq \frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)}
$$

We also know that if $y=g(x)$, then

$$
p_{Y}(y)=\frac{p_{X}(x)}{\frac{d g(x)}{d x}}
$$

If $X \rightarrow \vec{W}$ and $Y \rightarrow \vec{R}$, then

$$
p\left(\vec{R} \mid H_{i}\right)=\frac{p\left(\vec{W} \mid H_{i}\right)}{J}
$$

where J is the Jacobian of the transformation from \vec{W} to \vec{R}. The Jacobian function is invariant of H_{i}. Substitute in the likelihood function in terms of functions of \vec{W}.

$$
\Lambda \vec{R}=\frac{p\left(\vec{R} \mid H_{1}\right)}{p\left(\vec{R} \mid H_{0}\right)}
$$

$$
\begin{aligned}
& =\frac{\frac{p\left(\vec{W} \mid H_{1}\right)}{J}}{\frac{p\left(\vec{W} \mid H_{0}\right)}{J}} \\
& =\frac{p\left(\vec{W} \mid H_{1}\right)}{p\left(\vec{W} \mid H_{0}\right)}
\end{aligned}
$$

Thus the test can be performed via processing the likelihood function for \vec{W}. Using the Bayes theorem, we have:

$$
\begin{aligned}
& p\left(\vec{W} \mid H_{i}\right)=p\left(\left[\vec{W}_{1}, \vec{W}_{2}\right] \mid H_{i}\right) \\
& =p\left(\vec{W}_{1} \mid H_{i}\right) \cdot p\left(\vec{W}_{2} \mid \vec{W}_{1}, H_{i}\right)
\end{aligned}
$$

Suppose there exists a partitioning of \vec{W} such that

$$
p\left(\vec{W}_{2} \mid \vec{W}_{2}, H_{i}\right)=p\left(\vec{W}_{2} \mid \vec{W}_{1}\right)
$$

i.e. it is invariant in the hypotheses. Using this in the likelihood function

$$
\begin{gathered}
\Lambda_{\vec{R}}(\vec{R})=\Lambda_{\vec{W}}(\vec{W}) \\
=\frac{p\left(\vec{W}_{1} \mid H_{1}\right) \cdot p\left(\vec{W}_{2} \mid \vec{W}_{1}, H_{1}\right)}{p\left(\vec{W}_{1} \mid H_{0}\right) \cdot p\left(\vec{W}_{2} \mid \vec{W}_{2}, H_{0}\right)} \\
=\frac{p\left(\vec{W}_{1} \mid H_{1}\right)}{p\left(\vec{W}_{1} \mid H_{0}\right)} \triangleq \Lambda_{\overrightarrow{W_{1}}}\left(\vec{W}_{1}\right) \gtrless_{\text {selecect } H_{0}}^{\text {sele } H_{1}} \eta
\end{gathered}
$$

i.e the test is invariant in \vec{W}_{2}. In this case \vec{W}_{1} is called sufficient statistic to construct the test. e.g.: Binary hypothesis testing

$$
\begin{gathered}
H_{0}: r_{i}=n_{i} \\
H_{1}: r_{i}=n_{i}+A
\end{gathered}
$$

where $i=1,2, \cdots, N$ and $n_{i} \sim N\left(0, \sigma_{n}^{2}\right)$ and i.i.d $\forall i . A$ is a constant. The sufficient statistic is $w_{1}=\sum_{i=1}^{N} r_{i}$. It does not matter what \vec{W}_{2} is.

$$
\vec{W}=\left[\begin{array}{c}
\vec{W}_{1} \\
\vec{W}_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ccccc}
\frac{1}{N} & \frac{1}{N} & \frac{1}{N} & \cdots & \frac{1}{N} \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]}_{T[\cdot]}\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3} \\
\vdots \\
r_{n}
\end{array}\right]
$$

e.g.

$$
\begin{aligned}
& H_{0}: \vec{R}=\vec{S}_{0}+\vec{N} \\
& H_{1}: \vec{R}=\vec{S}_{1}+\vec{N}
\end{aligned}
$$

where $\vec{N} \sim N\left(0, \sigma_{n}^{2}\right) . S_{0}$ and S_{1} are constants. In that case, we showed that the decision is based on

$$
l(R) \triangleq\left(S_{1}-S_{0}\right)^{T} \vec{R} \gtrless_{\text {select } H_{0}}^{\text {selet } H_{0}} \text { threshold }
$$

The threshold is a scalar that is sufficient statistic for this detection problem.

