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1. DETECTION

• Testing of hypotheses.

• Statistical decision theory.

• Classification.

Hypothesis

A hypothesis is a statement or claim about the state of nature. In this case the user gathers data and lets
the data support or cast doubt on a hypothesis. This is called ”testing of hypothesis.”
This process involves choosing among a set of actions - a decision problem.

Applications

• Data communications: e.g. ”0” or ”1” is transmitted from a station to a user. The received signal, which
may be contaminated by the channel noise, is used to determine whether ”0” or ”1” is transmitted.

• Radar/sonar: Decide presence or absence of targets.

• Pattern recognition: Observe a signal and classify it.

Approach

Probabilistic approach required.
Requirements:

• Source model.

• Observation model.

• Criterion for making a decision.

Example: Binary hypothesis testing

R: measurement
N : noise (random)
S: source parameters (random/non-random)

The decision problem is to select between the following two hypotheses:

H0 : R = N (1)

(Null hypothesis) when 0 is sent.
H1 : R = N + S (2)

when 1 is sent.



This problem could be generated in the following analog system:
A user receives an amplitude shift keying (ASK) signal of the form:

r(t) = s(t) + n(t) (3)

where

s(t) =
{

0 ; under H0

p(t) ; under H1

p(t) is deterministic.

Figure 1. Block diagram of the ASK communication system

R = r(t) ∗ p∗(−t)
∣∣
t=T

(4)

N = n(t) ∗ p∗(−t)
∣∣
t=T

(5)

S = s(t) ∗ p∗(−t)
∣∣
t=T

(6)

where p∗(−t) denotes the matched filter matched to p(t).



2. ESTIMATION

The problem of estimation arises from the need to know the actual value of a signal or its parameters by observing
related signals.

Approach

Probabilistic approach required.

Requirements:

• Source model.

• Observation model.

• Criterion (bounds on the moments of the estimator error).

Example

r(t) = A cos [ω0t + α

∫ t

0

m(λ)dλ] + n(t) (7)

where r(t)=received signal (FM signal + noise)
m(t)=message
n(t)=additive noise

We might know statistical properties of the message and noise signals. Pdf is usually unknown, but some first
and second order moments i.e. mean and autocorrelation are known.

Objective
To find an estimate of the message m̂(t) from r(t) such that

E
[∣∣m(t)− m̂(t)

∣∣2]
the mean square error is minimized. This is called the minimum mean squared error (MMSE) estimator.

3. ELEMENTS OF HYPOTHESIS TESTING

Testing a hypothesis is to construct an experiment of chance related to the state of the nature and based on the
outcomes of that experiment, decide whether the hypothesis can be accepted or rejected.

Problem formulation

1. Source model: Source is denoted by a set of M hypotheses (possibilities)
Hi; i = 1, 2, ..., M − 1
with a priori probabilities
Pi=Prob(source generating Hi)

2. Observation model: This is something similar to impulse response/transfer function of a LTI system. How-
ever, for a LTI system, the impulse response is a deterministic function. We use observation (channel)
model that are probabilistic.

- Probabilistic transitions between the source and the observer is given by p(~R
∣∣Hi)

where ~R1×N is the observation vector and p(~R
∣∣Hi) is the pdf of the observation vector given that the source

generated the hypothesis Hi.



3. Decision rule: D(R) is the means by which the observation space called Z, i.e. (~R ∈ Z), is decomposed
into M disjoint regions Zi ∈ Z
i = 0, 1, ...M − 1 and

Z =
M−1⋃

i=0

Zi
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Figure 2. Partitioning of Z

such that Hi is decided iff R ∈ Zi.

- Z is created by the source and observation channel.
- Zi’s are created by the user based on some reward/punishment criterion. Our job is to select the partition
of Z such that the penalty of wrong decision s minimized.

Example
A source transmits binary data based on this model:

S =
{

3 ; under H0 with probability P0=0.2
−24 ; under H1 with probability P1=1− P0=0.8

The received signal is
R = S + N
where N is Gaussian noise ∼ N(0, σ2

n)
Note: N ∈ (−∞,∞)
The observation space is Z ∈ (−∞,∞).

Probability transition (channel pdf):

p(R
∣∣H0) =

1√
2πσn

exp

[
− (R− 3)2

2σ2

]



since (R
∣∣H0) ∼ N(3, σ2) and

p(R
∣∣H1) =

1√
2πσn

exp

[
− (R + 24)2

2σ2

]

since (R
∣∣H1) ∼ N(−24, σ2).

Binary hypothesis testing

H0 : R = N

H1 : R = N + S

where S is a random variable with pdf pS(s).
N is a r.v. with pdf pN (n).
S and N are independent r.v.’s.

To determine the channel pdf

H0 : R = N ; ⇒ p(R
∣∣H0) = pN (R)

H1 : R = N + S ⇒ p(R
∣∣H1) = pN (R) ∗ pS(R) =

∫ ∞

−∞
pN (R− λ)pS(λ)dλ

Special case: Suppose S = S0; where S0 is a known constant (fixed).

pS(s) = δ(s− S0)

or
pS(λ) = δ(λ− S0)

substituting this in p(R
∣∣H1):

p(R
∣∣H1) =

∫ ∞

−∞
pN (R− λ)δ(λ− S0)dλ

= pN (R− S0)

4. BAYES DECISION RULE

Assumptions:

i) {Pi}; i = 0, 1, ...,M − 1 apriori probabilities are known.
ii) There are reasonable costs assigned to every decision that are given by

Cij = Cost of deciding Hi when Hj is true

e.g.: Binary data communication

H0 = Transmit 0

H1 = Transmit 1

C00 = C11 = 0 (right decision)

C01 = C10 = 0 (wrong decision)



e.g.: Radar/Sonar

C00 = C11 = 0

C01 = 5× 109 dollars

C10 = 2× 105 dollars

Bayes’ criterion:

Minimize the average cost (risk in choosing {Zi})
Risk function:

R = E[cost over the probability space of Hi’s and ~R]

=
M−1∑

j=0

M−1∑

i=0

PjCijP [choosing Hi

∣∣Hj is true]

=
M−1∑

j=0

M−1∑

i=0

PjCij

∫

Zi

p(~R
∣∣Hj)d~R

Objective

To identify these Zi’s such that the risk function R(d) is minimized.
We rewrite the risk function via:

R =
M−1∑

j=0

PjCjj

∫

Zj

p(~R
∣∣Hj)d~R +

M−1∑

j=0

M−1∑

i 6=j,i=0

PjCij

∫

Zi

p(~R
∣∣Hj)d~R

We also know that ∫

Zj

p(~R
∣∣Hj)d~R = 1−

∑

i 6=j

∫

Zi

p(~R
∣∣Hj)d~R

substituting this in the expression for R:

R =
M−1∑

j=0

PjCjj

[
1−

∑

i 6=j

∫

Zi

p(~R
∣∣Hj)d~R

]
+

M−1∑

j=0

M−1∑

i 6=j,i=0

PjCij

∫

Zi

p(~R
∣∣Hj)d~R

=
M−1∑

j=0

PjCjj −
M−1∑

j=0

PjCjj

∑

i 6=j

∫

Zi

p(~R
∣∣Hj)d~R +

M−1∑

j=0

M−1∑

i 6=j,i=0

PjCij

∫

Zi

p(~R
∣∣Hj)d~R

=
M−1∑

j=0

PjCjj

︸ ︷︷ ︸
I

+
M−1∑

j=0

∑

i6=j

Pj(Cij − Cjj)
∫

Zi

p(~R
∣∣Hj)d~R

︸ ︷︷ ︸
II

I is invariant in Zi’s (or decision rule); thus can be omitted.
II is the one that has to be minimized. In particular, we wish to minimize

∑
i

∫
Zi

Ii(~R)d~R, where

Ii(~R) =
∑

j

Pj(Cij − Cjj)p(~R
∣∣Hj)d~R



We know that:
Pj ≥ 0 (8)

p(~R
∣∣Hj) ≥ 0 (9)

Moreover in any reasonable decision rule, the cost of making a wrong decision Cij , where i 6= j, is always greater
than the cost of making the right decision Cjj . Thus:

Cij − Cjj ≥ 0 (10)

which implies that the integrand
Ii(~R) ≥ 0 (11)

Conclusion: To minimize R, it is sufficient to minimize Ii(~R).

This leads to the following decision rule known as the Bayes Decision rule: Choose Zi as the region over which

Ii(~R) =
∑

j

Pj(Cij − Cjj)p(~R
∣∣Hj)

=
∑

j 6=i

Pj(Cij − Cjj)p(~R
∣∣Hj)

is the smallest. i.e. decide Hi if Ii(~R) < Ik(~R).

Procedure
Construct I0(~R), I1(~R), ..., IM−1(~R).
Choose the one that is the smallest as the decision.
Assign ~R to Zi.

Another way to identify Bayes decison rule is:

Ik(~R) ≷not Hk
not Hm

Im(~R)

where k 6= m and k, m = 0, 1, ..., M − 1.


