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Abstract. Very efficient sidelobe suppression of Barker codes of length 13 is achieved
through the use of a novel mismatched filter. The mismatched filter is comprised of a
conventional matched filter cascaded with a computationally efficient filter based on
multiplicative expansion. Several constant parameters are introduced in the terms of
the expansion and they are optimized to improve the performance of the filter. The
filter is shown to achieve a mainlobe to peak sidelobe ratio of almost 61.9 dB. This
is achieved at the cost of some deterioration in the signal to noise ratio at the filter
output. The loss in signal to noise ratio (SNR) is shown to be only 0.2 dB.
It is suggested that by applying the technique to compound Barker codes, the main-
lobe to peak sidelobe ratio could be maintained and the signal to noise ratio perfor-
mance could be improved.
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Field of the invention

The invention relates to mismatched filters for sidelobe suppression in radar systems and
wireless communication systems using Barker codes.



Background of the invention

Bi-phase codes are widely used for pulse compression in radar systems. Barker codes are
especially preferred in these applications because it achieves the best possible ratio between
the mainlobe and sidelobe peaks. However, the largest known is 13. It has been proved that
there is no barker code of odd length greater than 13. On the other hand, even though there
is no rigorous proof about the non-existence of Barker codes of even length greater than 4,
published research based on simulations show that they do not exist for lengths up to a few
thousands.

When using the Barker codes for pulse compression, the sidelobes need to be suppressed
as much as possible. This results in improved resolution in radar and wireless systems. The
code of length 13 achieves a mainlobe to peak sidelobe ratio of only 22.28 dB which is much
less than the practical requirement of most practical radar systems. Typically, the ratio is
required to be at least 30 dB in most radar applications.A peak sidelobe from a strong
target echo can sometimes weaken or even completely mask the mainlobe of a smaller target
echo. This motivates the need for sidelobe suppression filters or mismatched filters at the
receiver in order to improve the performance of the radar system. Mismatched filters have
been a subject of research in the the literature for a long time. These filters achieve improved
mainlobe to sidelobe ratio at the cost of some deterioration in the signal to noise ratio at
the filter output.

Prior research in the area of sidelobe suppression filters can be broadly classified into
two general methods. In the first method, a matched filter is first used to perform the pulse
compression correlation. A mismatched filter is then used in cascade with the matched filter
to suppress the sidelobes. Rihaczek and Golden introduced the R-G filters which follow this
methodology and have been a subject of active research ever since their introduction in 1971.
The R-G filters are presented in the publication: A. W. Rihaczek and R. M. Golden, Range
Sidelobe Suppression for Barker Codes, IEEE Transactions on Aerospace and Electronic
Systems, Vol AES-7, No. 6, Nov 1971, pp 1087-1092. The R-G filters were further improved
by Hua and Oskman who proposed a new algorithm to optimize the filter coefficients of the
R-G filters. This work is presented in the publication: Chen Xiao Hua and Juhani Oskman, A
New Algorithm to Optimize Barker Code Sidelobe and Suppression Filter, IEEE Transactions
on Aerospace and Electronic Systems, Vol AES-26, No. 4, July 1990, pp 673-677. It is also
described in the U.S. Pat. No. 5,070,337 by the same authors.

The second method involves directly designing the mismatched filter for the Barker code
without first passing it through a mismatched filter. These filters have been designed using
the Least Mean Square (LMS) or Linear Programming (LP) algorithms. The LMS approach
can be found in the publication: M. H. Ackroyd and F. Ghani, Optimum Mismatched Filters
for Sidelobe Suppression, IEEE Transactions on Aerospace and Electronic Systems, Vol AES-
9, No. 2, March 1973, pp 214-218. In the LP approach, linear programming methods are used
to optimize the coefficients of the filter being designed to minimize the peak range sidelobe of
the Barker coded waveform. The LP filters were found to be more effective in peak sidelobe
suppression. This technique was introduced in the publication: S. Zoraster, Minimum Peak
Range Sidelobe Filters for Binary Phase Coded Waveforms, IEEE Transactions on Aerospace
and Electronic Systems, Vol AES-16, No. 1, Jan 1980, pp 112-115.

In this work, we design the mismatched filter in cascade with a matched filter. The
mismatched filter is basically an implementation of an inverse filter to suppress the sidelobes
produced at the matched filter output. The inverse filter should not be directly implemented



due to its instability and unacceptable deterioration in the SNR performance. Rihaczek and
Golden approximated the inverse filter by expanding the transfer function as a Fourier
series and then taking finite terms from the expansion. The proposed filter is fundamentally
different from this approach because we use a multiplicative expansion to approximate the
transfer function of the inverse filter.

Claims

We claim:

1. A novel mismatched filter to be used in radar equipments and applications. The filter
is used in cascade with a matched filter and used to suppress the sidelobes produced at
the matched filter output. The mismatched filter is based on a multiplicative expansion
and approximation of the transfer function of the inverse filter 1

R(z) where R(z) denotes
the matched filter output when the incoming Barker code is matched with itself. The
method and design of the filter is described in details in the next section.

2. The method and filtering technique as described in claim 1, when applied to Barker code
of any other length.

3. The method and filtering technique as described in claim 1, when applied to compound
Barker codes.

4. The method and filtering technique as described in claim 1, when applied to sonar
applications. This could include applications such as submarine detection using sonar
beams and imaging of the ocean floor.

5. The method and filtering technique as described in claim 1, when applied to other
applications such as wireless communication, biomedical applications and geophysical
exploration.

Detailed Description of the Invention

The proposed filter is designed as a sidelobe suppression filter placed in cascade with a
matched filter. The proposed filter aims to suppress the sidelobes produced at the output of
the matched filter. Let us consider the z-transform of the incoming Barker code to be X(z).
Hence the matched filter transfer function is X(z−1) and the matched filter output is given
by:

R(z) = X(z)X(z−1) (1)

R(z) is composed of a mainlobe of height N and sidelobes of height 1. In general, we
denote the sidelobes as

∑
Sn(zn + z−n). Hence R(z) can also be denoted by:

R(z) = N +
∑

Sn(zn + z−n) (2)

= N [1 +
1
N

∑
Sn(zn + z−n)] (3)

Evidently, the ideal mismatched filter should be the inverse of R(z). However, such a filter
would be unstable and cannot be implemented in practice. We propose a multiplicative
expansion of this inverse filter as shown. Since the mainlobe to peak sidelobe ratio is what
matters to us, we ignore N in the following derivation to allow for any desired scale factor.



H(z) =
1

1 + 1
N

∑
Sn(zn + z−n)

(4)

=
1− 1

N

∑
Sn(zn + z−n)

1− 1
N2 [

∑
Sn(zn + z−n)]2

(5)

=
[1− 1

N

∑
Sn(zn + z−n)][1 + 1

N2 [
∑

Sn(zn + z−n)]2]
1− 1

N4 [
∑

Sn(zn + z−n)]4
(6)

=
[1− 1

N

∑
Sn(zn + z−n)][1 + 1

N2 {
∑

Sn(zn + z−n)}2][1 + 1
N4 {

∑
Sn(zn + z−n)}4]

1− 1
N8 {

∑
Sn(zn + z−n)}8

(7)

The filter transfer function can be approximated to higher order terms if desired. For
our present purposes, we will use only three terms in the multiplicative expansion. Also since

1− 1
N8 {

∑
Sn(zn + z−n)}8 ≈ 1

The filter transfer function is redefined as:

H(z) =
[
1− 1

N

∑
Sn(zn + z−n)

][
1 +

1
N2

{ ∑
Sn(zn + z−n)

}2][
1 +

1
N4

{ ∑
Sn(zn + z−n)

}4]

(8)

In order to improve the performance of the filter, we introduce some parameters in
this transfer function. The parameters either replace the constant terms in the derived
equation or work in conjunction with them. The transfer function is parameterized in a way
such that these parameters add flexibility in optimizing the performance of the filter. The
parameterized transfer function of the proposed filter is as given below:

H(z) =
[
C1 − 1

N + A1

{ ∑
Sn(zn + z−n)−A1

][
C2 +

1
(N + A2)2

{ ∑
Sn(zn + z−n)−A2

}2]

[
C3 +

1
(N + A3)4

{ ∑
Sn(zn + z−n)−A3

}4]

(9)

For notation purposes, we define the three terms separately as:

T1(z) =
[
C1 − 1

N + A1

{ ∑
Sn(zn + z−n)−A1

]
(10)

T2(z) =
[
C2 +

1
(N + A2)2

{ ∑
Sn(zn + z−n)−A2

}2]
(11)

T3(z) =
[
C3 +

1
(N + A3)4

{ ∑
Sn(zn + z−n)−A3

}4]
(12)



This filter can be implemented by connecting the three filters T1(z), T2(z) and T3(z) in
cascade. To facilitate even more flexibility, we have incorporated three multipliers in our
implementation of the filters. This allows us to optimize these multipliers as well in order to
improve the performance of the filter. The filter structure is shown in figure 1. MF denotes
the matched filter.

Fig. 1. Structure of the proposed filter

To find the optimum filter for the given structure, we optimize the parameters jointly.
The parameters optimized are A1, A2, A3, C1, C2, C3, m1, m2 and m3. To reduce the
complexity of the optimization process, we employ a multi-pass scanning technique. In the
first pass, we use large step sizes for all the parameters to determine the approximate re-
gion of optimum performance. In the subsequent passes, finer step sizes are used to find the
joint optimum values of all the parameters. The parameters are optimized to achieve the
maximum sidelobe suppression. The sidelobe suppression is measured as the ratio of the
magnitude of the mainlobe to the sidelobe (MSR). The optimum values of the parameters
and the corresponding MSR obtained is as follows:
MSR = 1241.9391 (61.88 dB)
A1 = 0.0216
A2 = 0.003
A3 = 0.046
C1 = 1.229
C2 = 1.565
C3 = 2.037
m1 = 0.094
m2 = 0.008
m3 = −1.106

We now show the performance of the filter for Barker code of length 13. The matched
filter output is shown in figure 2. As expected, the mainlobe is seen to be of height 13
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Fig. 2. Output of the matched filter

while the sidelobes are of height 1 and 0. The output of the matched filter is fed to the
proposed filter to suppress the sidelobes. The output of the proposed filter is shown in the
normal and logarithmic scales in figures 3 and 4, respectively. The sidelobes are found to
be suppressed and the mainlobe is enhanced. Table 2 gives the comparative performance of
the different sidelobe suppression filters reported in the literature. R-G denotes the original
filters reported by Rihaczek and Golden. (R−G−1)opt13, (R−G−2)opt13 and (R−G−3)opt13

denote the improved R-G filters as reported by Hua and Oskman.

Table 2. Comparative performance of different filters

Peak Sidelobe LSNR

R-G -43.8 dB -
(R−G− 1)opt13 -33.95 dB 0.15 dB
(R−G− 2)opt13 -46.42 dB 0.14 dB
(R−G− 3)opt13 -53.90 dB 1.90 dB
proposed filter -61.88 dB 0.2 dB

The large amount of sidelobe suppression comes at the cost of a deterioration in the
signal to noise ratio (SNR) performance as compared to the matched filter output. This is
evident from the results shown in table 2. Hua and Oskman achieved a sidelobe suppression
of -53.90 dB with a 1.9 dB deterioration in the SNR performance. The proposed filter not
only achieves a higher sidelobe suppression of almost -61.9 dB, but also the loss in SNR is
found to be only 0.2 dB. In the current age of ultra-fast processors and ultra large scale
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Fig. 3. Output of the proposed filter

integration in hardware chips, filter length is a factor of less concern than the degradation of
the SNR performance due to the filter. The degradation in SNR performance is excellent for
the proposed filter. This clearly indicates that even higher order terms can be incorporated
in the multiplicative expansion of the transfer function. This will reduce the peak sidelobe
level even further without degrading the SNR performance significantly.

Even though we have optimized the filter for only 3 stages, more stages can be easily
added to achieve better sidelobe suppression. Apart from further deteriorating the SNR
performance, the incorporation of more stages would increase the order of the filter and
hence the hardware requirement. In table 3, we show these variations as functions of the
number of stages. The lengths of the mismatched filter and the whole filter including the
matched filter are also plotted in figure 5 as a function of the number of stages.

Let us denote the length of the ith stage as Li. For notational purposes, the length of
the matched filter is denoted as L0. Evidently L0 will be the length of the Barker code that
is being used. The length of each stage of the filter is approximately double that of the
preceding section and is given as:

Li = 2Li − 1 (13)

In terms of the matched filter length L0, the length of the ith stage of the filter can be
shown to be:

Li = 2i(L0 − 1) + 1 (14)

Next, we enumerate the number of adders and multipliers required for the proposed filter.
The matched filter requires 12 adders irrespective of the number of stages in the mismatched
filter. As evident from (9), the number of adders for the first stage is (1 + 12). Similarly
the number of adders from the second and third stages are (1 + 12 × 2) and (1 + 12 × 4),
respectively. It can easily be observed that the number of adders from the ith stage is given
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Fig. 4. Output of the proposed filter in logarithmic scale

by:
a(i) = 1 + 12× 2i−1 (15)

Therefore, the total number of adders required for n stages of the filter is given by:

A(n) = 12 + n +
n∑

i=1

12× 2i−1 (16)

= 12 + n + 12(2n − 1) (17)
= n + 12× 2n (18)

This includes the 12 adders from the matched filter placed before the mismatched filter.
The variation in the required number of adders is shown in figure 6 as a function of the
number of stages.

Similar calculations can be done to enumerate the number of multipliers required for
implementing the filter. Proceeding similarly as in the case of adders, it can be shown from
(9) that the number of multipliers required for the ith stage is given by:

m(i) = 2 + 2i−1 (19)

Therefore, the total number of multipliers required for a filter with n stages is given by:

M(n) = 2n + 2n − 1 (20)

The variation in the number of multipliers as a function of the number of stages is also
shown in figure 6.
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Fig. 5. Filter lengths as functions of the number of stages

Table 3. Filter lengths and hardware requirements as a function of number of stages

Stages Mismatched filter length Total filter length including the MF # of adds per output # of mult. per output

1 25 37 25 3
2 73 85 50 7
3 169 181 99 13
4 361 373 196 23
5 745 757 389 41

The proposed filter with only 3 multiplicative expansion terms, cascaded with the matched
filter, results in a total filter length of 181. However, the number of non zero coefficients is
much smaller resulting in 99 additions and 13 multiplications per output.

In this work, we have achieved high sidelobe suppression of length 13 Barker code through
the use of a novel mismatched filter based on multiplicative expansion. The loss in SNR to
achieve the high sidelobe suppression has been shown to be only 0.2 dB. The idea behind
this filter is immediately extensible to compound Barker codes. As in the case of a regular
matched filter, the use of compound Barker codes is expected to improve the SNR per-
formance while preserving the mainlobe to peak sidelobe ratio obtained for the length 13
Barker code.
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