Problem Set 11, PS11 due Monday June 14

PS11-1 : Air is stored in a $10,000 \mathrm{ft}^{3}$ salt dome at 500 kPa and 400 K is used at times of high electric demand to drive a turbine generator. For turbine exit conditions of 100 kPa and 300 K determine the amount of work done by the turbine during the period when the salt dome pressure drops from 500 kPa to 300 kPa . Consider both the turbine and cave to be adiabatic.

PS11-2 Waste heat is rejected at 80 F from a Carnot heat engine which receives $700 \mathrm{Btu} /$ min of heat at a temperature of 1700 F . A refrigerator which receives heat at 20 F and rejects heat at 80 F uses the entire output of the heat engine. Determine a) the maximum rate at which heat is absorbed by the refrigeration machine and b) the total amount of heat rejected at 80 F .

PS11-3 region. The maximum absolute temperature of the cycle is 1.2 times the minimum absolute temperature. The net work input to the cycle is 22 kJ . During the heat rejection process the refrigerant changes from a saturated vapor to a saturated liquid. Determine the minimum pressure in the cycle.

PS11-4 The efficiency of a heat engine increases as the rejection temperature decreases. It is suggested that the rejection temperature of the heat engine be reduced with a refrigeration machine driven with the additional power produced by the more efficient heat engine Is this a good idea? Support your conclusion with quantative analysis.

UnsteadySystem:

mass originallyin cave.

PS11-1

(alternate: the region spaceoccupiedby thecave.)

$\Delta \mathrm{U}$

Assume the caveis adiabatic.
$\mathrm{pv}^{\mathrm{k}}=$ constant
$\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}\left(\frac{\mathrm{p}_{\mathrm{f}}}{\mathrm{p}_{\mathrm{i}}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}$
$\mathrm{m}=\frac{\mathrm{pV}}{\mathrm{RT}}$ for initial and final mass in the cave $\mathrm{W}_{\text {flow }}=\int \mathrm{pdv}=\mathrm{p}_{0} \Delta \mathrm{~V}=+\left(\mathrm{m}_{\mathrm{f}}-\mathrm{m}_{\mathrm{i}}\right) \mathrm{p}_{\mathrm{o}} \mathrm{v}_{\mathrm{o}}$
$\mathrm{Q}=\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}+\mathrm{W}_{\text {flow }}+\mathrm{W}_{\text {shaft }}$
$\mathrm{E}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$E_{f}=m_{f} u_{f}+\left(m_{f}-m_{i}\right) u_{o}$

$\mathrm{Q}=\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}+\mathrm{W}_{\text {flow }}+\mathrm{W}_{\text {shaft }}$
$\mathrm{Q}=\mathrm{m}_{\mathrm{f}} \mathrm{u}_{\mathrm{f}}+\left(\mathrm{m}_{\mathrm{f}}-\mathrm{m}_{\mathrm{i}}\right) \mathrm{u}_{\mathrm{o}}-\mathrm{m}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}+\mathrm{W}_{\text {flow }}+\mathrm{W}_{\text {shaft }}$
U
$0=\left[\mathrm{m}_{\mathrm{f}} \mathrm{u}_{\mathrm{f}}-\mathrm{m}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right]+\left[\left(\mathrm{m}_{\mathrm{f}}-\mathrm{m}_{\mathrm{i}}\right) \mathrm{u}_{\mathrm{o}}\right]+\left[\left(\mathrm{m}_{\mathrm{f}}-\mathrm{m}_{\mathrm{i}}\right) \mathrm{p}_{\mathrm{o}} \mathrm{v}_{\mathrm{o}}\right]+\left[\mathrm{W}_{\text {shaft }}\right]$
$\Delta \mathrm{U}_{\text {cave }} \quad \mathrm{U}_{\text {exit gas }} \quad \mathrm{W}_{\text {flow }} \quad \mathrm{W}_{\text {shaft }}$

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{i}}=\frac{500 \mathrm{kPa} \times 10,000 \mathrm{~m}^{3}}{.287 \mathrm{kPa} \mathrm{~m}^{3} / \mathrm{kg}^{\mathrm{O}} \mathrm{~K} \times 400^{\circ} \mathrm{K}}=43,554 \mathrm{~kg} \\
& \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}\left(\frac{\mathrm{p}_{\mathrm{f}}}{\mathrm{p}_{\mathrm{i}}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=400\left(\frac{300 \mathrm{kPa}}{500 \mathrm{kPa}}\right)^{.2857}=345.7^{\mathrm{O}} \mathrm{~K} \\
& \mathrm{~m}_{\mathrm{f}}=\frac{300 \mathrm{kPa} \times 10,000 \mathrm{~m}^{3}}{.287 \mathrm{kPa} \mathrm{~m}^{3} / \mathrm{kg}^{\mathrm{O}} \mathrm{~K} \times 345.7^{\mathrm{O}} \mathrm{~K}}=30.238 .8 \mathrm{~kg} \\
& \left(\mathrm{~m}_{\mathrm{i}}-\mathrm{m}_{\mathrm{f}}\right)=13,315 \mathrm{~kg} \\
& \mathrm{~W}_{\text {flow }}=\int \mathrm{pdv}=\mathrm{p}_{\mathrm{o}}(\mathrm{~V}-\mathrm{V})=\mathrm{p}_{\mathrm{o}}\left(\frac{\left(\mathrm{~m}_{\mathrm{i}}-\mathrm{m}_{\mathrm{f}}\right) \mathrm{RT}_{\mathrm{o}}}{\mathrm{p}_{\mathrm{o}}}\right) \\
& \mathrm{W}_{\text {flow }}=13,315 \mathrm{~kg} \times .287 \mathrm{kPa} \mathrm{~m}^{3} / \mathrm{kg}^{\mathrm{O}} \mathrm{~K} \times 300^{\circ} \mathrm{K} \\
& \mathrm{~W}_{\text {flow }}=1,146,435 \mathrm{~kJ} \\
& \mathrm{u}_{\mathrm{i}}=\mathrm{u} @ 400^{\circ} \mathrm{K}=.718 \times 400^{\circ} \mathrm{K}=287.2 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{u}_{\mathrm{f}}=\mathrm{u} @ 345.7^{\circ} \mathrm{K}=.718 \times 345.7^{\circ} \mathrm{K}=248.2 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{u}_{\mathrm{o}}=\mathrm{u} @ 300^{\circ} \mathrm{K}=.718 \times 300^{\circ} \mathrm{K}=215.4 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{Q}=\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}+\mathrm{W}_{\text {flow }}+\mathrm{W}_{\text {shaft }} \\
& \mathrm{E}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} \\
& E_{f}=m_{f} u_{f}+\left(m_{f}-m_{i}\right) u_{o} \\
& 0=\mathrm{m}_{\mathrm{f}} \mathrm{u}_{\mathrm{f}}+\left(\mathrm{m}_{\mathrm{f}}-\mathrm{m}_{\mathrm{i}}\right) \mathrm{u}_{\mathrm{o}}-\mathrm{m}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}+\mathrm{W}_{\text {flow }}+\mathrm{W}_{\text {shaft }}
\end{aligned}
$$

PS11-2

$\eta=\frac{W}{Q_{\text {in }}}=\frac{T_{H}-T_{L}}{T_{H}}=\frac{1620}{2160}=.75$
$\mathrm{W}=\mathrm{Q}_{\mathrm{in}} \times \eta=700 \times .75=525 \mathrm{BTU}$
$\mathrm{Q}_{\text {out }}=\mathrm{Q}_{\text {in }}-\mathrm{W}=700-525=175 \mathrm{BTU}$
$\underset{\text { ref }}{\operatorname{COP}}=\frac{\mathrm{Q}_{\mathrm{L}}}{\mathrm{W}}=\frac{\mathrm{T}_{\mathrm{L}}}{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{L}}}=\frac{460+20}{80-20}=8$.
a) $\mathrm{Q}_{\mathrm{L}}=8 \times \mathrm{W}=8 \times 525=4200 \mathrm{BTU} / \mathrm{min}$
b) $\mathrm{Q}_{\mathrm{H}}=\mathrm{Q}_{\mathrm{L}}+\mathrm{W}=4725 \mathrm{BTU}$

Total rejected $=$ enigne $\mathrm{Q}_{\text {out }}+$ heat pump Q_{H}
Total rejected $=175+4725=4900 \mathrm{BTU}$

$$
\begin{aligned}
& \mathrm{COP}=\frac{\mathrm{Q}_{\text {in }}}{\mathrm{W}}=\frac{\mathrm{T}_{\mathrm{L}}}{\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{L}}} \\
& \mathrm{COP}_{\text {ref }}=\frac{\mathrm{T}_{\mathrm{L}}}{1.2 \mathrm{~T}_{\mathrm{L}}-\mathrm{T}_{\mathrm{L}}}=5 \\
& \mathrm{Q}_{\text {in }}=5 \times \mathrm{W}=5 \times 22=110 \mathrm{~kJ} \\
& \mathrm{Q}_{\text {out }}=\mathrm{Q}_{\text {in }}+\mathrm{W}=110+22=132 \mathrm{~kJ} \\
& \text { closed system } \Rightarrow \mathrm{Q}_{\text {out }}=\Delta \mathrm{U}+\mathrm{W} \\
& \mathrm{Q}_{\text {out }}=\mathrm{m}_{2} \mathrm{u}_{2}-\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{p}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
& \text { since } \mathrm{p}_{2}=\mathrm{p}_{1} \\
& \mathrm{Q}_{\text {out }}=\mathrm{m}_{2} \mathrm{u}_{2}-\mathrm{m}_{1} \mathrm{u}_{1}+\left(\mathrm{m}_{2} \mathrm{p}_{2} \mathrm{v}_{2}-\mathrm{m}_{1} \mathrm{p}_{1} \mathrm{v}_{1}\right) \\
& \mathrm{Q}_{\text {out }}=\mathrm{m}_{2} \mathrm{~h}_{2}-\mathrm{m}_{1} \mathrm{~h}_{1}=\mathrm{mh}_{\mathrm{fg}} \\
& \mathrm{~h}_{\mathrm{fg}}=\frac{\mathrm{Q}_{\text {out }}}{\mathrm{m}}=\frac{132}{.96 \mathrm{~kg}}=137.5 \mathrm{~kJ} / \mathrm{kg} \\
& @ \mathrm{~h}_{\mathrm{fg}}=137.5 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~T}_{\mathrm{h}}=61^{\circ} \mathrm{C}=334^{\circ} \mathrm{K} \\
& \mathrm{~T}_{\mathrm{L}}=\mathrm{T}_{\mathrm{h}} / 1.2=267.3^{\circ} \mathrm{K}=5.3^{\circ} \mathrm{C} \\
& \mathrm{p}=\mathrm{p}_{\text {sat }} @ 5.2^{\circ} \mathrm{C}=.354 \mathrm{MPa}
\end{aligned}
$$

PS11-4

$\eta=\frac{W_{\mathrm{E} 2}}{\mathrm{Q}_{\mathrm{in}}}=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
$\mathrm{W}_{\mathrm{E} 1}=\mathrm{Q}_{2}\left(\frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)$
$\underset{\mathrm{HP}}{\mathrm{COP}}=\frac{\mathrm{Q}_{\mathrm{o}}}{\mathrm{W}_{\mathrm{HP}}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{2}-\mathrm{T}_{3}}$
$\mathrm{W}_{\mathrm{HP}}=\mathrm{Q}_{\mathrm{o}}\left(\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)$
for $W_{E 1}=W_{h p}$
$\mathrm{Q}_{2}\left(\frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)=\mathrm{Q}_{\mathrm{o}}\left(\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)$

$\mathrm{Q}_{2}=\mathrm{Q}_{\mathrm{o}}$ and there is no bebefit with reversible equipment and a loss with real irreversible equipment

