Problem Set 7, PS7 due Friday June 4

PS7-1 A rigid tank and a piston cylinder device both contain 1.2 kmole of an ideal gas at the same temperature and pressure. The temperature of both container is raised by 15 C by adding heat. If the gas in the piston-cylinder is held at a constant pressure how much extra heat must be added to the piston-cylinder compared to the heat added to the tank?

PST-2 $25 \mathrm{ft}^{3}$ of nitrogen at 50 psia and 700 F is contained in a piston-cylinder device, The nitrogen in the piston-cylinder is cooled to 140 F while the pressure in the piston-cylinder remains constant. Determine the amount of heat transfer. Assume a specific heat at the average nitrogen temperature.

PS7-3

The piston of a piston-cylinder device rests on stops and has a mass such that a pressure of 400 kPa is required to lift the piston off the stops. The piston-cylinder initially contains 3 kg of air at 200 kPa and 27 C . The volume is doubled by adding heat Determine a) the work done by the air, and b) the heat transferred. Sketch the process on a pressure-volume property diagram.

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{mc}_{\mathrm{p}} \Delta \mathrm{~T} \quad \mathrm{Q}=\mathrm{mc}_{\mathrm{v}} \Delta \mathrm{~T} \\
& \Delta \mathrm{Q}=\mathrm{mc}_{\mathrm{p}} \Delta \mathrm{~T}-\mathrm{mc}_{\mathrm{v}} \Delta \mathrm{~T} \\
& \Delta \mathrm{Q}=\mathrm{m} \Delta \mathrm{~T}\left(\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}\right) \\
& \Delta \mathrm{Q}=\mathrm{m} \Delta \mathrm{~T}(\mathrm{R})
\end{aligned}
$$

$$
\Delta \mathrm{Q}=1.2 \mathrm{kmole} \times\left(15^{\mathrm{O}} \mathrm{~K}\right) \times 8.314 \frac{\mathrm{~kJ}}{\mathrm{~kg}^{\mathrm{O}} \mathrm{~K}}
$$

$$
\Delta \mathrm{Q}=149.65 \mathrm{~kJ}
$$

PS7-2

$\mathrm{m}=\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}}=\frac{50 \mathrm{psia} \times 144 \times 25 \mathrm{ft}^{3}}{53.35 \times(700+460)}=2.814 \mathrm{lbm}$
closed system
$\mathrm{Q}=\Delta \mathrm{E}+\mathrm{W}$
$\mathrm{Q}=\Delta \mathrm{E}+\int \mathrm{pdV}=\Delta \mathrm{E}+\mathrm{p} \int \mathrm{dV}$
$\mathrm{Q}=\mathrm{m} \times\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)+\mathrm{m} \times\left(\mathrm{pv}_{1}-\mathrm{p}_{2}\right)$
$\mathrm{Q}=\mathrm{m} \times\left(\mathrm{u}_{2}+\mathrm{pv}_{2}\right)-\mathrm{m}\left(\mathrm{u}_{2}+\mathrm{pv}_{1}\right)$
$\mathrm{Q}=\mathrm{m}\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)=2.814 \times .251 \times(700-140)$
.215 is the c_{p} at 400 F .
$\mathrm{Q}=397 \mathrm{BTU}$

$$
\begin{aligned}
& \mathrm{PS} 7-3 \\
& \mathrm{~V}_{1}=\frac{\mathrm{mRT}}{\mathrm{p}}=\frac{3 \times .28 \times(273.15+27)}{200}=1.292 \mathrm{~m}^{3} \\
& \mathrm{~W}=\int \mathrm{pdv}=\mathrm{p}_{2}\left(\mathrm{~V}_{3}-\mathrm{V}_{2}\right) \\
& \mathrm{W}=400 \mathrm{kPa}\left(2 \times 1.292 \mathrm{~m}^{3}-1.191 \mathrm{~m}^{3}\right)=516 \mathrm{~kJ} \\
& \mathrm{~T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)=300.15^{\mathrm{O}} \mathrm{~K} \times 2=600.3^{\mathrm{O}} \mathrm{~K} \\
& \mathrm{~T}_{3}=\mathrm{T}_{2}\left(\frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}}\right)=600.3^{\circ} \mathrm{K} \times 2=1200^{\circ} \mathrm{C} \\
& \mathrm{Q}=\Delta \mathrm{E}+\mathrm{W} \\
& \mathrm{Q}=\mathrm{m} \times \mathrm{c}_{\mathrm{v}}\left(\mathrm{~T}_{3}-\mathrm{T}_{1}\right)+\mathrm{W} \\
& \mathrm{c}_{\mathrm{v}} @ 750^{\circ} \mathrm{K}=.8 \\
& \mathrm{Q}=3 \times .8 \times(1200-300.15)+516 \mathrm{~kJ}=2675 \mathrm{~kJ}
\end{aligned}
$$

