## Problem Set 6, PS4 due June 2

PS6-1 50 kg of water at 150 kpa and 25 C is contained in a piston cylinder device having a piston cross-sectional area of $.1 \mathrm{~m}^{2}$. The water is heated causing part of the water to vaporize. The piston reaches a linear spring having a spring constant of $100 \mathrm{kN} / \mathrm{m}$ when the volume contained by the piston cylinder reaches $.2 \mathrm{~m}^{3}$. The piston then rises 20 cm further as more heat is added. Determine using the steam tables and EES a) the final pressure of the water, $b$ ) the work done during the processes. Sketch a schematic of the apparatus and a pressure volume property diagram of the processes.

PS6-2 A balloon material has the characteristic that the pressure inside the balloon is always proportional to the square of the diameter. If a spherical balloon made of this material contains 10 lbs of air at 30 psia and 800 R determine the work done when the volume of the balloon doubles as a result of heat transfer.

## Problem Set 6, PS4 due June 2

## PS6-1

$\mathrm{v}_{1}=\mathrm{v}_{\mathrm{f}} @ 25^{\circ} \mathrm{C}=.001003 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{V}_{1}=\mathrm{m} \times \mathrm{V}_{1}=50 \mathrm{~kg} \times .001003 \mathrm{~m}^{3} / \mathrm{kg}=.05 \mathrm{~m}^{3}$
a) $\mathrm{p}_{3}=\mathrm{p}_{2}+\frac{\mathrm{kx}}{\mathrm{A}}=150 \mathrm{kPa}+\frac{100 \mathrm{~N} / \mathrm{m} \times .2 \mathrm{~m}}{.1 \mathrm{~m}^{2}}$
$\mathrm{p}_{3}=150 \mathrm{kPa}+200 \mathrm{kPa}=350 \mathrm{kPa}$
$\mathrm{v}_{2}=\frac{.2 \mathrm{~m}^{3}}{50 \mathrm{~kg}}=.004 \mathrm{~m}^{3} / \mathrm{kg}$

$\mathrm{V}_{3}=\mathrm{V}_{2}+.1 \mathrm{~m}^{2} \times .2 \mathrm{~m}=.22 \mathrm{~m}^{3}$
$\mathrm{v}_{3}=\frac{\mathrm{V}_{3}}{\mathrm{~m}}=\frac{.22}{50}=.0044 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{T} @ \mathrm{P}=350 \mathrm{kPa}$ and $\mathrm{v}=.0044 \mathrm{~m}^{3} / \mathrm{kg}$ PressureTable $=138.88^{\circ} \mathrm{C}$, in two phase region
b) $\mathrm{W}=\mathrm{m} \int_{1}^{2} \mathrm{pdv}+\int_{2}^{3} \mathrm{Fdx}=\mathrm{mp}_{1}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)+\int_{0}^{.2 \mathrm{~m}}\left(\mathrm{p}_{2} \mathrm{~A}+\mathrm{kx}\right) \mathrm{dx} \quad \mathrm{W}=50 \times 150(.004-.001003)+\frac{(350+150)}{2} \times(.22-.20)$ $\mathrm{W}=\mathrm{mp}_{1}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)+\mathrm{p}_{2} \times \mathrm{A} \times \mathrm{x}+\frac{\mathrm{k} \times \mathrm{x}^{2}}{2}$
$\mathrm{W}=50 \times 150(.004-.001003)+150 \times .1 \times .2+\frac{100 \mathrm{~N} / \mathrm{m}}{2}(.2 \mathrm{~m})^{2}$
$\mathrm{W}=22.48+3+2=27.48 \mathrm{~kJ}$

```
"PS2 mae 204 Summer 2010"
"INPUT"
T1=25
p1=150
k=100
V2=.2
m=50
x23=.2
A=.1
"CALCULATION"
sv1=volume(Steam_IAPWS,T=T1,p=p1)
V1=m*sv1
p3=p1+k*x23/A
sv2=V2/m
V}3=\textrm{V}2+.1*x2
sv3=V2/m
T3=temperature(Steam_IAPWS,v=v3,p=p3)
p2=p1
W1=m*p1*(sv2-sv1)
w2=+p2*x23*A
w3=(k*}\times2\mp@subsup{3}{}{\wedge}2)/
SOLUTION
Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]
\begin{tabular}{lll}
\(A=0.1\) & \(k=100\) & \(m=50\) \\
\(p 3=350\) & \(s v 1=0.001003\) & \(s v 2=0.004\) \\
\(T 3=138.9\) & \(\mathrm{~V} 1=0.05015\) & \(\mathrm{~V} 2=0.2\) \\
\(w 2=3\) & \(w 3=2\) & \(x 23=0.2\)
\end{tabular}
p1=150
VV3=0.22 W1 =22.48
w2 = 3 w3 =2 x23 = 0.2
```


## Problem Set 6, PS4 due June 2



