Problem Set 5, PS4 due Friday May 28

PS5-1 A spherical balloon has a diameter of 6 meters and is filled with helium at 20 C and 200 kpa . Determine the number of moles and the mass of the helium in the balloon.

PS5-2 The air in a $.53 \mathrm{ft}^{3}$ tire is at 90 F and 20 psig . How much air must be added to the tire to raise the pressure to 30 psig . Assume atmospheric pressure is 14.6 psia the temperature remains constant and volume of the tire does not increase.

$$
\begin{aligned}
& \mathrm{V}_{\text {sphere }}=\frac{4}{3} \pi \mathrm{R}^{3}=\frac{4}{3} \times 3.1416 \times 3^{3}=113.1 \mathrm{~m}^{3} \\
& \text { moles }=\frac{\mathrm{pV}}{\mathrm{R}^{*} \mathrm{~T}}=\frac{200 \mathrm{kPa} \times 113.1 \mathrm{~m}^{3}}{8.314 \mathrm{kPa} \mathrm{~m}^{3} / \mathrm{kmole} \mathrm{~K} \times(273.15+20) \mathrm{K}}=9.28 \mathrm{kmole} \\
& \mathrm{R}=\frac{8.314 \mathrm{kPam}^{3} / \mathrm{kmole} \mathrm{~K}}{4.03 \mathrm{kmole} / \mathrm{kg}}=2.076 \frac{\mathrm{kPa} \mathrm{~m}}{\mathrm{~kg}} \\
& \text { mass }=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{200 \mathrm{kPa} \times 113.1 \mathrm{~m}^{3}}{2.075 \mathrm{kPa} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{~K} \times(273.15+20) \mathrm{K}}=37.19 \mathrm{~kg}
\end{aligned}
$$

PS5-2
state 1 before addition of air $p_{1}=20 .+14.6=34.6 \mathrm{psia}$ state 2 after air addition $\quad \mathrm{p}_{2}=30+14.6=44.6$ psia
$\mathrm{m}_{1}=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{34.6 \mathrm{psia} \times 144 \mathrm{in}^{2} / \mathrm{ft}^{2} \times .53 \mathrm{ft}^{3}}{53.35 \mathrm{f} \mathrm{tlb}} / 1 \mathrm{~b}_{\mathrm{m}} \mathrm{R} \times(459.69+90) \mathrm{R} \quad .09 \mathrm{lb}$
T and $\mathrm{V}=\mathrm{constant}$
$\mathrm{V}=\frac{\mathrm{mRT}}{\mathrm{p}}=\frac{\mathrm{m}_{1} \mathrm{~T}_{1}}{\mathrm{p}_{1}}=\frac{\mathrm{m}_{2} \mathrm{~T}_{2}}{\mathrm{p}_{2}}$
$\mathrm{m}_{2}=\mathrm{m}_{1} \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=.09 \mathrm{lb} \times \frac{44.6 \mathrm{psia}}{35.6 \mathrm{psia}}=.1128 \mathrm{lbs}$
air added $=.1128 \mathrm{lb}-.09 \mathrm{lb}=.0225 \mathrm{lb}$

