Problem Set 3, PS3 due Monday May 24

PS3-1 Determine the temperature at which water will boil in Denver. In Denver the atmospheric pressure is 83.4 kpa .

PS3-1 Water at 300 C and an unknown pressure is contained in a rigid tank. The tank is cooled and the water begins to condense at 180 C . Determine the initial pressure in the tank.

PS3-3 Heat is added to water in a piston cylinder device until the contents are all vapor. There are 50 liters of water in the piston cylinder device initially at 25 C and 300 kPa . Determine a) the mass of the water, b) the final temperature, c) the total enthalpy change and sketch the process on a sketch of a temperature volume diagram of the process.
PS3-4
Superheated water is allowed to cool to 250 F in a constant specific volume process. The initial condition of the steam is 180 psi and 500 F . What is the final pressure, temperature and enthalpy of the steam? Sketch a temperature volume property diagram for the process.

PS3-1

$$
\begin{aligned}
& \mathrm{T}_{\text {boiling }}=\mathrm{T}_{\text {saturation }} @ 83.4 \mathrm{kPa} \\
& \text { From water Temperature Table } \\
& \mathrm{T} \quad \mathrm{P} \\
& 90 \quad 70.183 \\
& \\
& 9583.4 \\
& 95 \\
& \text { ratio }=\frac{84.609}{84.609-83.4} \\
& \\
& \mathrm{~T}_{\text {boiling }}=95-.0838 \times(95-90) \\
& \mathrm{T}_{\text {boiling }}=94.58 \mathrm{C}
\end{aligned}
$$

PS3-2

$$
\begin{aligned}
& \mathrm{v}_{2}=\mathrm{v}_{\text {saturation }} @ 180 \mathrm{C}=.19384 \\
& \mathrm{v}_{1}=\mathrm{v}_{2} \\
& \mathrm{p}_{2}=\text { pressure } @\left(\mathrm{v}_{2}, 300 \mathrm{C}\right) \\
& \text { water Superheat Table } \\
& \\
& 300 \mathrm{C} \quad \mathrm{p}=1.2 \mathrm{Mpa} \\
& \mathrm{v}=.21386 \quad \mathrm{v}=.19386
\end{aligned} \quad \mathrm{p}=1.2 \mathrm{MPa}=.182330 口 \begin{aligned}
& \\
& \text { ratio }=\frac{.21386-.19384}{.21385-.18233}=.634 \\
& \mathrm{p}=1,2 \mathrm{MPa}+.634 \times(1.4-1.2) \\
& \mathrm{p}=1.33 \mathrm{MPa}
\end{aligned}
$$

@ $25 \mathrm{C}, 300 \mathrm{kPa}, \mathrm{v}_{1}=\mathrm{v}_{\mathrm{f}}$ @ $25 \mathrm{C}=.001003 \mathrm{~m}^{3} / \mathrm{kg}$
a) $\mathrm{m}_{\mathrm{f}}=\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{f}}}=\frac{.05 \mathrm{~m}^{3}}{.001003 \mathrm{~m}^{3} / \mathrm{kg}}=49.85 \mathrm{~kg}$
b) $\mathrm{T}=\mathrm{T}_{\text {saturation }} @ 300 \mathrm{kPa}=133.55 \mathrm{C}$
c) $\mathrm{h}_{2}=\mathrm{h}_{\mathrm{g}} @ 300 \mathrm{kPa}=2725.3 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{f}} @ 25 \mathrm{C}=14.89 \mathrm{~J} / \mathrm{kg}$

$\mathrm{H}_{2}-\mathrm{H}_{1}=\mathrm{m} \times\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)=49.85 \mathrm{~kg} \times(2725.3 \mathrm{~kJ} / \mathrm{kg}-104.89 \mathrm{~J} / \mathrm{kg})$
V
$\mathrm{H}_{2}-\mathrm{H}_{1}=130,627.4 \mathrm{~kJ}$

PS3-4

@ $180 \mathrm{psia}, 500 \mathrm{~F}, \mathrm{v}_{1}=3.042 \mathrm{ft}^{3} / \mathrm{lb}$ Superheat Table at 250 and saturation, $\mathrm{v}_{\mathrm{f}}=.017 \mathrm{ft}^{3} / \mathrm{lb}, \mathrm{v}_{\mathrm{g}}=13.826 \mathrm{ft}^{3} / \mathrm{lb}$
a) $\mathrm{p}_{2}=29.82$ satruration pressure at 250 psia
b) $\mathrm{x}=\frac{3.042 \mathrm{ft}^{3} / \mathrm{lb}-.017 \mathrm{ft}^{3} / \mathrm{lb}}{13.826 \mathrm{ft}^{3} / \mathrm{lb}-.017 \mathrm{ft}^{3} / \mathrm{lb}}=.2 .19$
c) $\mathrm{h}=\mathrm{h}_{\mathrm{f}}+\mathrm{x} \times \mathrm{h}_{\mathrm{fg}}$

$\mathrm{h}=218.59 \mathrm{BTU} / \mathrm{lb}+.219 \times 945.6 \mathrm{BTU} / \mathrm{lb}$
$\mathrm{h}=425.7 \mathrm{BTU} / \mathrm{lb}$

