Seismic Safety of Nonstructural Components and Systems in Medical Facilities

Gilberto Mosqueda Assistant Professor Department of Civil, Structural and Environmental Engineering University at Buffalo

Research Collaborators

- Professor Andre Filiatrault
- Professor Andrei Reinhorn
- Rodrigo Retamales, PhD Candidate
- Ryan Davis, Graduate Student

Overview

- Definition and importance of nonstructural components and systems in seismic events
- Current code requirements
- UB Nonstructural Component Simulator (UB-NCS)
 - Capabilities and limitations of new testing apparatus dedicated for testing nonstructural components
- Proposed protocol for testing with UB-NCS
- Recent experiments of composite hospital room to examine seismic safety of medical equipment

Nonstructural Components

- Systems and elements in a building that are not part of the load-bearing structural system
- Architectural
 - Cladding, glazing
 - □ Ceilings, partition walls
- Mechanical and Electrical
 Distribution systems piping
 - □ HVAC ducts and equipment
- Contents
 - Free-standing and anchored medical equipment, computers, shelves, etc.

Investment in Nonstructural Components and Content

Role of Nonstructural Components in Earthquakes

 Hospital emergency room immediately after the 1994 Northridge earthquake

Role of Nonstructural Components in Earthquakes

2001 Nisqually Earthquake (Filiatrault)

Role of Nonstructural Components in Earthquakes

- In order for a building or facility to remain operational after an earthquake, both structural and nonstructural systems must remain intact
- In past earthquakes
 - many hospitals and other facilities have survived earthquakes without structural damage, but lost functionality due to nonstructural damage
 - 50% of \$18 Billion in building damage following 1994 Northridge earthquake was due to nonstructural damage (Kircher 2003)
- In addition to structural response, compatible seismic performance of nonstructural components is essential to achieve global performance objectives

Code Requirements (ASCE 7-05)

International Building Code references ASCE 7-05 Nonstructural design requirements depend on:

- Seismic Design Category of structure
 - $\hfill\square$ A-F, depending on occupancy category and site spectral accelerations at short (S_{DS}) and long period (S_{D1})
- Occupancy Category of structure
 - □ I low hazard to human life (storage)
 - II regular buildings
 - □ III high hazard to human life (schools, meeting rooms)
 - □ IV essential facilities (hospitals, emergency response center)
- Nonstructural Importance Factor I_P = 1 or 1.5
 - I_P =1.5 if component (a) is essential for life-safety; (b) contains hazardous materials; or (c) is required for functionality of Cat. IV structure

Code Requirements (ASCE 7-05)

Equivalent Static Design Force

$$F_p = \frac{0.4a_p S_{DS} W_p}{R_p / I_p} \left(1 + 2\frac{z}{h}\right)$$

- $\Box a_p$ = component amplification factor (1-2.5)
- \Box I_p = component importance factor (1-1.5)
- $\square R_p$ = component response modification factor (1-12)
- $\Box S_{DS}$ = short period spectral acceleration
- $\Box W_p = \text{component weight}$

 $\Box z/h$ = normalized height of component in building

Code Requirements (ASCE 7-05)

- Special Certification Requirements for Designated Seismic Systems (I_P =1.5 in Seismic Category C-F)
 - Active mechanical and electrical equipment that must remain operable following design earthquake shall be certified by supplier as operable
 - Components with hazardous contents shall be certified by supplier as maintaining containment
- Must be demonstrated by
 - Analysis
 - Testing (shake table testing using accepted protocol)
 AC-156
 - Experience Data

Special Requirements for Hospitals in California

- SB-1953 Hospital Seismic Retrofit Program
 - Evaluate current hospital building stock
 - □ Meet nonstructural performance standards by 2002
 - Meet structural performance standards for collapse prevention by 2008 (possible extension to 2013)
 - Buildings capable of continued operation after design level event by 2030
- ASCE 7-05 Seismic Qualification Requirements apply for mechanical and electrical equipment

Testing protocols for experimental seismic qualification of equipment

- ICC-ES AC156 shake table testing protocol
 - Test under non-stationary random excitations matching target floor response spectrum

Force levels consistent with static design force *F_P* Test unit should remain functional after testing

Testing protocols for seismic fragility assessment

- FEMA 461 testing protocols
 - Racking protocol: low rate cyclic displacements and/or forces selected to match 'rainflow cycles' for expected seismic response of buildings

Application of Testing Protocol

HVAC Equipment Mounted on Vibration Isolation/Restraint Systems

PI: A. Filiatrault Sponsor: MCEER/ASHRAE Industry Partner: ASHRAE

University at Buffalo Nonstructural Component Simulator (UB-NCS)

Modular and versatile twolevel platform for experimental seismic performance evaluation of full scale acceleration and displacement sensitive nonstructural components under realistic full scale floor motions

UB-NCS Properties

- General properties
 - Capable of 2 horizontal DOF (+ 1 vertical when mounted on shaking table)
 - □ Max. specimen weight: 6 kips/level (27 kN/level)
 - □ Operating frequency range: up to 5.0 Hz
- Activated by 4 high performance dynamic actuators
 - □ Force per actuator: 22 kips (100 kN)
 - Peak displacement: ± 40 in (1 m)
 - □ Peak velocity: 100 in/s (2.5 m/s)
 - □ Peak acceleration: up to 3g's

UB-NCS Testing Capabilities

- Replicate recorded or simulated floor motions at upper levels of multi-story buildings
- Replicate full scale near-fault ground motions (including large displacement/velocity pulses)
- Capability to generate data required to better understand behavior of nonstructural components under realistic demands
 - Develop experimental fragility curves
 - Develop effective techniques to protect equipment in buildings

- Objectives:
 - Identify dynamic properties and limitations of UB-NCS
 - Evaluate system fidelity for replicating simulated and recorded full scale floor motions
- Extensive testing including:
 - □ Hammer impact and white noise tests
 - □ Sine sweep tests
 - □ Transient floor motions
 - □ New protocols under development

 UB-NCS dynamic properties limit frequency range of operation to 5 Hz

Dynamic property	Frequency (Hz)	
Actuator vertical bow-string frequency	8.7-9.2	
Actuator horizontal bow-string frequency	6.6	
Actuator oil-column frequency	12.3-13.6	
Frame transverse direction frequency	38.9-39.3	
Platform dish mode frequency	19.1-20.0	

 Tapered sinusoidal test examples

Performance Evaluation of UB-NCS Simulated building seismic response Accuracy of test machine S_A (g) measured by comparing □ Response spectrum 2 2.5 3 Frequency (Hz) □ Interstory drift history Comparison Desired and Observed Interstory Drift Observed Drift (in) -2' 0 25 5 10 15 20 Time (sec) 2.5 3 ency (Hz)

- □ 52-story office building in LA
- Concentrically braced steel frame core with outrigger moment frames

(CSMIP)

17**1.** 181

Performance Evaluation of UB-NCS

9**1.** 8

Reproduction of recorded seismic response

UB-NCS Testing Protocol

- New protocol is being developed to
 - Simultaneously apply displacement and acceleration demands similar to those expected in real buildings
 - Test systems with multiple attachment points at different floor levels (e.g. piping systems) and sensitive to both displacements and accelerations
- Motions for bottoms and top level are determined for a given z/h ratio to match:
 - □ Target floor acceleration response spectrum
 - □ Inter-story drift spectrum

UB-NCS Testing Protocol

 Example Probabilistic Seismic Hazard with a probability of exceedance of 10% in 50 (USGS)

US	GS Spectral Accele a SH with PE	eration Amplitudes for E 10%/50yrs
	Period T (sec)	Spectral Amplitude (g)
	0.0	0.63
	0.1	1.22
	0.2	1.51 ← S _{DS}
	0.3	1.34
	0.5	0.96
	1.0	0.50 - S _{D1}
	2.0	0.22

UB-NCS Testing Protocol

- Power Spectral Density consistent with seismic hazards is used as input for building model
- Floor motion demands computed by considering shear-flexural model with secondary system
 - □ Primary system periods: T_{ρ} =0.1-5 sec
 - □ Secondary system periods: T_s =0-5 sec
 - □ Damping for primary and secondary systems: $\zeta_p = \zeta_s = 5\%$
 - \Box Parameter α =0, 5 and 10

UB-NCS Testing Protocol

Resulting three dimensional Floor Response Spectra (FRS) for α =5 as a function of Tp and Ts

UB-NCS Testing Protocol

84th percentile FRS's and mean 84th percentile FRS along building height

Extrapolated mean 84th percentile FRS along building height

UB-NCS Testing Protocol

Mean 84th percentile FRS along building height

UB-NCS Testing Protocol

UB-NCS Testing Protocol

UB-NCS Testing Protocol

 Protocol histories (*h*/*H*=0.3) used to assess the seismic performance of two identical steel studded gypsum partition walls

UB-NCS Testing Protocol

Protocol histories (*h/H*=0.3)

	Drift (%)		Damage observed
-	0.47	:	Raised areas and small cracks around screws at and near bottom and top tracks. Vertical "cracks" at top and bottom ends of corner beads.
	0.52	:	Initial pop-out of screws at and near bottom and top tracks. Cracks along tape covering sheetrock panel joints. Vertical "cracks" at top and bottom ends of corner beads are propagated. Incipient crushing of wall corners.
45	1.10	:	Widespread pop-out of screws in the interior of sheetrock panels. Cracks along most of tape covering sheetrock panel joints. Permanent gaps (-1/16-1/8") in joints between sheetrock panels. Increased crushing of wall corners.
-	1.64	:	Widespread pop-out of screws in the whole wall. Edges of sheetrock panels crushed. Small dimension sheetrock panels become loose. Permanent gaps (-1/8-1/4") in most joints between sheetrock panels. Increased crushing of wall corners.
	2,21	:	Widespread pop-out of screws in the whole wall. Screws in all edges of all panels are disconnected. Edges of sheetrock panels continue crushing. Small dimension sheetrock panels totally loose. Permanent gaso (-14-1/27) in most joints between sheetrock panels.
1.5	3.31	:	All edges of sheetrock panels crushed. All panels became loose or unstable. Permanent gaps (-1/2-3/4") in all joints between sheetrock panels.

42

Composite Hospital Room Tests

- Demonstrate effects of earthquakes on typical medical equipment and other nonstructural components in hospitals
 Research emphasis is on partition walls
- Compare loading protocol developed at UB with simulated floor motions
- Verify performance capabilities of UB-NCS with realistic payload

Composite Hospital Room Tests

- Nonstructural components include
 - □ Steel-stud gypsum partition wall
 - □ Lay-in suspended ceiling system
 - □ Fire protection sprinkler piping system
 - Medical gas lines
 - Medical equipment
 - Free-standing
 - Anchored

Partition wall

- Main emphasis of research
- Gypsum panels on steel stud frame
- Layout based on quasi-static test conducted at UC San Diego

Ceiling system

Suspended ceiling with lay in tiles, including light and sprinkler

Piping System

- Horizontal U-shaped run at top level with single sprinkler head
- Vertical run connecting both levels

Medical Gas Piping System

Two copper lines connected to wall outletsHorizontal run supported by trapeze

Medical Equipment - attached

- Wall mounted monitor
 Anchored to three stud
 - assembly in wall
 4 locations including one faulty installation
- Ceiling mounted surgical lamp
 - Supported by steel frame connected to platform

Loading Protocol

Use protocol developed at UB

- □ (*h/H*=1.0)
- Preliminary tests at 10%, 25% and 50% of design level
- Design Basis Earthquake DBE (100%)

 Maximum Considered Earthquake MCE (150%)

Peak Disp	lacements	Peak Inter	story Drift	Peak Ve	elocities	Peak Acc	elerations
D _{Max Bot} (in)	D _{Max Top} (in)	Δ_{Max} (in)	δ _{Max} (%)	V _{Max Bot} (in/s)	V _{Max Top} (in/s)	A _{Max Bot} (g)	A _{Max Top} (g)
16.3	17.6	1.31	0.87	30.5	32.6	0.73	0.77

Simulation using protocol - MCE

Simulation using protocol - DBE

Thank you

