

LARGE-SCALE DYNAMIC TESTING

IMPLEMENTATION OF SEISMIC ISOLATORS IN OFFSHORE GAS PLATFORMS

- Lunskoye and Piltun Platforms, Sakhalin, 2006
 - Seismic isolation of platforms
 - Contributions of University at Buffalo (development of procedures for scaling and testing seismic isolators, development of technical basis for design of isolators, simplified analysis of platforms)
 - Engineering: AMEC, UK

LUNSKOYE/PILTUN GAS PLATFORMS

L	UNSK F	OYE/ PLATF	PILTUN GAS FORMS
	Lunskoye	Piltun	LOADINGS
Design Life (years)	30	30	 Temperature
Topsides Dry weight (m. tons)	21 000	27 500	 -36°C to 36°C Snow and ice accumulation
Topsides Operating weight (m. tons)	27 000	33 500	 Intervention 100-year return period
Approximate Topsides Plan Dimensions (m)	100 x 50	100 x 70	 2500 m. tons per platform
Water Depth (m)	49	30	
Number of Conductors	27	45	
Facilities	Drilling Production Utilities Living Quarters	Drilling Production Utilities Living Quarters	 Blast pressure greater than normal due to sealed compartments used to maintain minimum temperature +5°C
Gas production	1850 MMSCFD	100 MMSCFD	
Oil/ Condensate production	50000 BPD	70000 BPD	loo and waya
GBS caisson size LxBxD (m)	105x88x13.5	105x88x13.5	Seismic
Number of GBS columns	4	4	

LUNSKOYE/PILTUN GAS PLATFORMS-ICE LOADING

- Ice present for 6 months, up to 2m thick
- Horizontal loads per platform
 - 260MN (103MN per leg) for 1-year return period (operational)
 - 324MN (124MN per leg) for 100-year return period (frequent event)
 - 435MN (155MN per leg) for 10,000-year return period
- Necessitated all services to be within legs
- Design criteria
 - No damage to topsides for 100-year wave/ice effects
 - Survival criteria for 10,000-year return period wave/ice

I	PLATF	ORMS	S-ISOLATORS
SLE Response			Isolators Single concave FP Cost steel quitable for low
Calculations based on nominal properties	Without isolation	With isolation	 Cast steel suitable for low temperatures Radius of curvature 3962mm Displacement capacity 700mm Contact diameter 1752mm Pendulum period 4.0 sec
Deck Accel. (0 to +47m)	0.65 to 0.85 g	0.24 to 0.31g	 Lower bound friction 0.040 Upper bound friction 0.095 Range of nominal friction 0.04 to 0.06 λ-factors 12 aging
Equipment Accel. (cranes, flare, etc.)	1.2 to 4.4 g	0.6 to 2.0 g	• 1.1 travel of 2900m • 1.4 temperature of -40°C • Adjustment factor 0.75, so that λ_{max} =1.60

CHIRAG I OIL PLATFORM, **AZERBAIJAN** 1990's application

- Elastoplastic isolation system

System does not have sufficient re-centering force capability per US or European seismic isolation specifications.

IMPLEMENTATION OF SEISMIC ISOLATORS IN LNG TANKS

IMPLEMENTATION OF SEISMIC ISOLATORS IN LNG TANKS

LNG TANKS, REVITHOUSSA, GREECE, 1996

IMPLEMENTATION OF SEISMIC ISOLATORS IN CHEMICALS TANKS

- Soft first story construction
- Strengthening of columns would transfer problem to tank above
- Seismic isolation (reduction of force) an attractive option
- Strengthening of columns still needed

IMPLEMENTATION OF SEISMIC ISOLATORS IN CHEMICALS TANKS

- Due to close spacing of columns, temporary transfer of load not needed (but support system provided)
- Isolators inserted without need to preload (no use of flat jacks)
- Use of FP bearings with transfer of P-∆ moment on strengthened column below

IMPLEMENTATION OF HYBRID SEISMIC ISOLATION SYSTEMS

SAN BERNANDINO HOSPITAL, CALIFORNIA, 1993 400 HIGH DAMPING RUBBER BEARINGS AND 186 NONLINEAR VISCOUS DAMPING DEVICES 600mm DISPLACEMENT CAPACITY

IMPLEMENTATION OF HYBRID SEISMIC ISOLATION SYSTEMS

