



























#### **BENEFITS OF SEISMIC ISOLATION**

- Conventional
  - Pier Design Strength=0.2W
  - Pier Yield Strength=0.3W
  - Substantial inelastic action in Design-basis Earthquake
  - Bearing displacement in Design Earthquake=60mm
  - Unknown performance in Maximum Earthquake

- Seismic Isolated (with redistribution)
  - Pier Design Strength~0.06W
  - Pier Yield Strength~0.09W
  - Elastic substructure in Maximum Earthquake
  - Isolator displacement demand in Maximum Earthquake~250mm



























#### ADAPTIVE ISOLATORS TRIPLE FP BEARING





















## IMPLEMENTATION OF SEISMIC ISOLATORS IN BRIDGES





BENECIA-MARTINEZ BRIDGE SAN FRANCISCO BAY AREA, RETROFIT 2000 OVER 1200mm DISPLACEMENT CAPACITY

CIE 500, 2009

2009 Civil, Structural & Environmental Eng., University at Buffalo

























- LNG Tanks, Greece, 1996
  - 430 Friction-pendulum bearings
  - Development work at University at Buffalo (development of computer code 3D-BASIS-ME, development of simplified procedures for analysis and design of inner tank under uplift conditions, development and implementation of quality control program for isolators, peer review services, inspection of isolators in 2002)
  - Tested by manufacturer (EPS)
  - Engineering: Whessoe, UK











# LUNSKOYE/PILTUN PLATFORMS



| LUNS                                        | ΚΟΥΕ                                                | /PILTI                                              | JN PLATFORMS                                                                  |
|---------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|
|                                             | Lunskoye                                            | Piltun                                              |                                                                               |
| Design Life (years)                         | 30                                                  | 30                                                  | LOADINGS                                                                      |
| Topsides Dry Weight (m.<br>tons)            | 21 000                                              | 27 500                                              | Temperature                                                                   |
| Topsides Operating Weight<br>(m. tons)      | 27 000                                              | 33 500                                              | <ul> <li>-36°C to 36°C</li> <li>Show and ice accumulation</li> </ul>          |
| Approximate Topsides Plan<br>Dimensions (m) | 100 x 50                                            | 100 x 70                                            | <ul> <li>Show and ice accumulation</li> <li>100-year return period</li> </ul> |
| Water Depth (m)                             | 49                                                  | 30                                                  | <ul> <li>2000 to 2000 fill toris per<br/>platform (~80psf)</li> </ul>         |
| Number of Conductors                        | 27                                                  | 45                                                  | Plact                                                                         |
| Facilities                                  | Drilling Production<br>Utilities<br>Living Quarters | Drilling Production<br>Utilities<br>Living Quarters | Blast     Blast pressure greater     than normal due to sealed                |
| Gas Production                              | 1850 MMSCFD                                         | 100 MMSCFD                                          | compartments used to                                                          |
| Oil/ Condensate Production                  | 50000 BPD                                           | 70000 BPD                                           | temperature of +5°C                                                           |
| GBS Caisson Size LxBxD (m)                  | 105x88x13.5                                         | 105x88x13.5                                         | Ice and wave     Seismin                                                      |
| Number of GBS columns                       | 4                                                   | 4                                                   | • Seisinic                                                                    |





| SLE Response                                      |                   |                | Isolators <ul> <li>Single concave FP</li> </ul>                                                                                                                                                                                                                                                                          |
|---------------------------------------------------|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculations<br>based on<br>nominal<br>properties | Without isolation | With isolation | <ul> <li>Cast steel suitable for low temperatures</li> <li>Radius of curvature 3962mm</li> <li>Displacement capacity 700mm</li> <li>Contact diameter 1752mm</li> <li>Pendulum period 4.0 sec</li> <li>Lower bound friction 0.040</li> <li>Upper bound friction 0.095</li> <li>Range of nominal friction 0.041</li> </ul> |
| Deck Accel.<br>(0 to +47m)                        | 0.65 to 0.85 g    | 0.24 to 0.31g  |                                                                                                                                                                                                                                                                                                                          |
| Equipment<br>Accel.<br>(cranes,<br>flare, etc.)   | 1.2 to 4.4 g      | 0.6 to 2.0 g   | <ul> <li>λ-factors         <ul> <li>1.2 aging</li> <li>1.1 travel of 2900m</li> <li>1.4 temperature of -40°C</li> </ul> </li> <li>Adjustment factor 0.75, so that 1.4 temperature of -40°C</li> </ul>                                                                                                                    |







### IMPLEMENTATION OF SEISMIC ISOLATORS IN STORAGE TANKS

- Soft first story construction
- Strengthening of columns would transfer problem to tank above and would require strengthening of foundation
- Seismic isolation (reduction of force) an attractive option
- Strengthening of columns still needed





### IMPLEMENTATION OF SEISMIC ISOLATORS IN STORAGE TANKS

- Due to close spacing of columns, temporary transfer of load not needed (but support system provided)
- Isolators inserted without need to preload (no use of flat jacks)
- Use of FP bearings with transfer of P-∆ moment on strengthened column below













# IMPLEMENTATION OF HYBRID SEISMIC ISOLATION SYSTEMS









#### IMPLEMENTATION OF DAMPERS IN STRUCTURES





MILLENIUM BRIDGE, LONDON. SUSPENSION BRIDGE WITH LATERAL CABLES. OPENED JUNE 10, 2000, CLOSED IN TWO DAYS. EXCEESSIVE BRIDGE SWAY WITH MORE THAN 1000 PEOPLE ON BRIDGE.

37 HERMETICALLY-SEALED VISCOUS DAMPERS, **1.3 BILLION CYCLES**. 50 TUNED MASS DAMPERS. OPENED TO PUBLIC JANUARY 2002

