

CONTENT

- 1. Introduction
- 2. Behavior of Self-centering Systems
- 3. Dynamic Response of MDOF Self-centering Systems
- 4. Ancient Applications of Self-centering Systems
- 5. Early Modern Applications of Self-centering Systems
- 6. Shape Memory Alloys
- 7. The Energy Dissipating Restraint (EDR)
- 8. Self-centering Dampers Using Ring Springs
- 9. Post-tensioned Frame and Wall Systems
- Considerations for the Seismic Design of Self-centering Systems

ЧB

Ъ

CIE500D "Introduction to Graduate Research in Structural Engineering"

1. Introduction

- With current design approaches, most structural systems are designed to respond beyond the elastic limit and eventually to develop a mechanism involving ductile inelastic response in specific regions of the structural system while maintaining a stable global response and avoiding loss of life
- Resilient communities expect buildings to survive a moderately strong earthquake with no disturbance to business operation
- Repairs requiring downtime may no longer be tolerated in small and moderately strong events

CIE500D "Introduction to Graduate Research in Structural Engineering"

3

2

1. Introduction

- Current Seismic Design Philosophy
 Performance of a structure typically assessed based on maximum
 deformations
 - Most structures designed according to current codes will sustain residual deformations in the event of a design basis earthquake (DBE) Residual deformations can result in partial or total loss of a building:
- _

•

ч

Ф

- Restoual deformations can result in partial or total loss of a building:
 static incipient collapse is reached
 structure appears unsafe to occupants
 response of the system to a subsequent earthquake or aftershock is impaired by the new at rest position
 Residual deformations can result in increased cost of repair or replacement of nonstructural elements
- _

- on noisituctual elements Residual deformations not explicitly reflected in current performance assessment approaches. Framework for including residual deformations in performance-based seismic design and assessment proposed by Christopoulos et al. (2003) Chapter presents structural self-centering systems possessing characteristics that minimize residual deformations and are economically viable alternatives to current lateral force resisting systems

CIE500D "Introduction to Graduate Research in Structural Engineering"

2. Behavior of Self-centering Systems

- Optimal earthquake-resistant system should:
 - Incorporate nonlinear characteristics of yielding or hysteretically damped structures: limiting seismic forces and provide additional damping
 - Have self-centering properties: allowing structural system to return to, or near to, original position after an earthquake
 - Reduce or eliminate cumulative damage to main structural elements.

CIE500D "Introduction to Graduate Research in Structural Engineering"

6

5

3. Dynamic Response of MDOF Self-centering Systems

- Response of 3, 6, 10-storey Steel Frames
- Self-centering Frames with Post-Tensioned Energy Dissipating (PTED) Connections vs. Welded Moment Resisting Frames (WMRF)
 Beam and Column Sections designed according to UBC 97 for a Seismic Zone 4 (Los Angeles)
- Special MRF, assuming non-degrading idealized behavior for welded MRFs
- A992 Steel, with RBS connections
- Hinging of beams and P-M interaction included
- 2% viscous damping assigned to 1st and (N-1)th modes
- 6 historical ground motions scaled to match code spectrum

20 second zero acceleration pad at end of records CIE500D "Introduction to Graduate Research in Structural Engineering"

8

 3. Dynamic Response of MDOF Self-centering Systems • Response of 6-Storey Frames to Ensemble of 6 Records 										
	Response Index		CM2	LAN2	LP3	NOR3	NOR9	SUP3	MEAN	
	Maximum Drift	MRF	1.62	2.32	1.91	1.24	1.50	2.01	1.77	
	(%)	PTED	1.52	1.77	1.70	1.29	1.45	1.83	1.59	
	Residual Drift	MRF	0.07	0.18	0.37	0.05	0.18	0.52	0.23	
	(%)	PTED	0.00	0.13	0.02	0.00	0.02	0.05	0.04	
	Maximum	MRF	0.85	0.86	0.89	0.79	0.77	0.97	0.86	
	Acceleration (g)	PTED	0.79	0.80	0.75	0.65	0.60	0.79	0.73	
	Input Energy	MRF	14990	27670	11110	9134	8456	12460	13970	
	(kips.in)	PTED	6514	18455	8401	5953	6382	10985	9450	
	Hysteretic Energy	MRF	7282	17710	5481	2150	2761	7613	7166	
	(kips.in)	PTED	645	2904	1049	263	384	1847	1182	
PTED Frames:										
 limited residual drift at base columns unlike welded frame 										
 similar maximum accelerations as WMRFs (for all records) 										
CIES00D "Introduction to Graduate Research in Structural Engineering" 15										15

6. Shape Memory Alloys Experimental Studies Ocel et al. (2004): Nitinol rods re-heated above alloying temperature Re-generate austenitic microstructure and recover initial shape Rods heated for 8 minutes at 300°C and 3⁄4 of permanent deformations recovered Without Control of the state of the s

7. The Energy Dissipating Restraint (EDR)

• Hysteretic Behavior

- Manufactured by Fluor Daniel, Inc.
- Originally developed for support of piping systems
- Principal components:
 - internal spring, steel compression wedges, bronze friction wedges, stops at both ends of internal spring, external cylinder

8. Self-centering Dampers Using Ring Springs

SHAPIA Damper

- Manufactured by Spectrum Engineering, Canada
- $-\operatorname{Ring}$ spring stack restrained at ends by cup flanges
- Tension and compression in damper induces compression in ring spring stack: symmetric flag-shaped hysteresis

11. Post-tensioned Frame and Wall Systems

- Self-Centering Systems for Steel Structures
- Friction Damped PT Frame (Kim and Christopoulos 2008)
- ED bars replaced by Friction Energy Dissipating (FED) connections made of Non Asbestos Organic (NAO) brake lining pads on stainless steel

