All about mass transfer coefficients

Solute = A; all mass transfer coefficients (k_y , etc.) refer to transport of this species

Presentation in context of one-component mass transfer (A diffusing/transferring through non-diffusing/transferring B)

Presentation in context of gas phase; everything carries over to liquid phase ($k_y \rightarrow k_x, y_{Ai} \rightarrow x_{Ai}, y_A \rightarrow x_A$)

Solute flux

$$N_{\mathrm{A}} = k_{\mathrm{y}} \ln \left(\frac{1 - y_{\mathrm{A}}}{1 - y_{\mathrm{A}i}} \right) = k_{y} \underbrace{y_{\mathrm{A}i} - y_{\mathrm{A}}}_{(1 - y_{\mathrm{A}})_{L}} \cong k_{y} (y_{\mathrm{A}i} - y_{\mathrm{A}})$$

where

$$\overline{(1-y_{A})}_{L} = \frac{(1-y_{A}) - (1-y_{Ai})}{\ln \left[(1-y_{A})/(1-y_{Ai}) \right]}$$
$$= \frac{y_{Ai} - y_{A}}{\ln \left[(1-y_{A})/(1-y_{Ai}) \right]}$$

If transport is by pure molecular diffusion then

$$k_y = \frac{Dc}{L} = \frac{D_v \rho_M}{B_T}$$
 in book notation

With flow $k_y > \frac{Dc}{L}$

1. Mass transfer coefficients for various solute concentration units

$$k_y(y_{\mathrm{A}i} - y_{\mathrm{A}}) = k_y(y_{\mathrm{A}i} - y_{\mathrm{A}}) \times \frac{c}{c} = \boxed{\frac{k_y}{c}}(c_{\mathrm{A}i} - c_{\mathrm{A}})$$
$$= \underbrace{k_c}(c_{\mathrm{A}i} - c_{\mathrm{A}})$$

$$k_{y}(y_{\mathrm{A}i} - y_{\mathrm{A}}) = k_{y}(y_{\mathrm{A}i} - y_{\mathrm{A}}) \times \frac{P/RT}{c}$$
$$= \frac{k_{y}}{cRT} (Py_{\mathrm{A}i} - Py_{\mathrm{A}})$$
$$= \frac{k_{c}}{RT} (p_{\mathrm{A}i} - p_{\mathrm{A}})$$
$$= k_{G} (p_{\mathrm{A}i} - p_{\mathrm{A}})$$

Correlations generally given for k_c which has the dimensions of a velocity (units e.g. m/s)

2. Dimensionless groups

Definitions

- L = characteristic length (= diameter for round objects cylinder and sphere — called D_p in book and "diam" by Elroy, who reserves the symbol D for diffusion coefficients)
- U = characteristic velocity

 $\rho =$ fluid density

 $\mu =$ fluid viscosity

 $\nu =$ fluid kinematic viscosity = μ/ρ

Fluid is mixture of solute A and solvent B. The concentration of A varies with position (decreasing with increasing distance from a surface that A is being transported away from). Fluid properties are well approximated by pure solvent B properties for dilute solutions.

Dimensionless groups that are inputs to correlations

Reynolds number

$$Re = \frac{\rho UL}{\mu} = \frac{(\rho U)L}{\mu} = \frac{GL}{\mu} \text{ where } G = \rho U = \text{mass velocity}$$
$$= \frac{UL}{\mu/\rho} = \frac{UL}{\nu} \text{ where } \nu = \mu/\rho = \text{kinematic viscosity}$$

Schmidt number

$$Sc = \frac{\nu}{D} = \frac{\mu}{\rho D}$$

Dimensionless groups that are outputs of correlations

Sherwood number

$$Sh = \frac{k_c L}{D}$$
 [so that $k_c = (D/L) \times Sh$]

Alternate non-dimensionalization of mass transfer coefficient is the Stanton number for mass transfer

$$\operatorname{St}_{M} = \frac{k_{c}L}{D} = \frac{k_{c}L}{D} \times \frac{\nu}{UL} \times \frac{D}{\nu} = \frac{k_{c}L}{D} \times \left(\frac{UL}{\nu} \times \frac{\nu}{D}\right)^{-1} = \frac{\operatorname{Sh}}{\operatorname{Re Sc}}$$

Colburn j factor for mass transfer

$$j_M = \frac{k_c}{U} \left(\frac{\mu}{\rho D}\right)^{2/3} = \operatorname{St}_M \operatorname{Sc}^{2/3} = \frac{\operatorname{Sh}}{\operatorname{Re} \operatorname{Sc}^{1/3}}$$

Why introduce the Colburn j factor? Because it was found to be approximately equal to the $\frac{1}{2}$ times the Fanning friction factor for f_{Fanning} for turbulent flow in smooth pipes

$$j_M = \operatorname{St}_M \operatorname{Sc}^{2/3} = \frac{\operatorname{Sh}}{\operatorname{Re} \operatorname{Sc}^{1/3}} = \frac{f_{\operatorname{Fanning}}}{2}$$

This so-called Colburn or Colburn–Chilton analogy allows fluid mechanical correlations to inform mass transfer

"In general, j_M is a function of Re." In other words, j_M does a pretty good job of encapsulating the Schmidt number dependence of mass transfer coefficients.

3. Commonly used correlations

Be sure to see textbook for ranges of validity and caveats

Mass transfer to walls of pipe with turbulent flow

 $Sh = 0.023 \text{ Re}^{0.8} \text{ Sc}^{1/3}$

Equivalent to

$$j_M = 0.023 \text{ Re}^{-0.2}$$

Mass transfer in gas phase within wetted wall tower

Here the "wall" for the gas is the wavy surface of the liquid running down the tower

 $Sh = 0.023 \text{ Re}^{0.81} Sc^{0.44}$

(not very different from the preceding correlation)

Flow perpendicularly past a single cylinder

 $Sh = 0.61 \text{ Re}^{1/2} Sc^{1/3}$

Flow past a single sphere

 $Sh = 2.0 + 0.6 Re^{1/2} Sc^{1/3}$

Flow through a packed bed of spherical particles

$$Sh = 1.17 Re^{0.585} Sc^{1/3}$$

Equivalent to

 $j_M = 1.17 \text{ Re}^{-0.415}$

Note that the G in the Reynolds number is based on the **superficial** fluid velocity, i.e., volumetric flow rate divided by **total** cross-sectional area of the bed (even though the part of the cross-sectional area is blocked by the spheres)