This problem deals with experiments performed in a
laboratory on adsorption of water from air in a bed filled with silica gel (length $L=60 \mathrm{~cm}$). Measured concentration proflles are shown in Fig. 4 for various times after the initial tine $t=0$, with $x=$ distance along bed. You may assume that $c(L, t)=0$ for $t \leq 2 h$. Details of the experiment are as follows:

$$
\begin{aligned}
& u_{0}=\text { superficial gas velocity }=13.1 \mathrm{~cm} / \mathrm{s} ; \\
& y_{0}=\text { water mole fraction in entering gas }=5210 \times 10^{-6} ; \\
& T=20^{\circ} \mathrm{C} ; \\
& P=3.0 \mathrm{~atm} ; \\
& \text { Ped }=0.30 \mathrm{~g} \text { silica gel } / \mathrm{cn}^{3} \text { bed volume }
\end{aligned}
$$

The break-point time t_{b} is defined by the criterion $c\left(L, t_{b}\right)=0.10 c_{o}$.

The experiment was interrupted at five hours and therefore there is insufficient data to determine the saturation capacity of the bed by time integration. Figure 5 will allow you to determine $w_{\text {sat }}$ by alternate means.
(a) (10 points) What ia the saturation capacity of the bed $W_{\text {sat }}$ in g water/g silica gel?
(b) (30 points) What is the unused capacity of the silica gel (in terms of equivalent bed length) at the break-point?
(c) (10 points) Estimate the break-point time for a longer bed length of 100 cm , all other conditions being equal.

Data: vapor pressure of water

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{\mathrm{sat}}(\mathrm{mm} \mathrm{Hg})$
	19.8
20	31.8
30	35.3

(a) Incoming ain: $P_{\mathrm{H}_{2} \mathrm{O}}=y_{\mathrm{H}_{2} \mathrm{O}} P$

$$
\begin{aligned}
& =7 \mathrm{H}_{2} 0 \\
& =\left(521010^{-6}\right)\left(3 \mathrm{~atm} \times \frac{760 \mathrm{mmth}}{1(\mathrm{am}}\right) \\
& =11.88 \mathrm{mmH} / 2
\end{aligned}
$$

(at or $\rho_{\mathrm{H}_{2} \mathrm{O}}^{\text {sit }}=19.8 \mathrm{~mm} \mathrm{Hg}$. Then

$$
N_{R}=(100 \%) \frac{\rho_{H_{20} O}}{\rho_{H_{20}}^{\operatorname{sic}}}=(100 \%) \frac{11.88}{19.8}=60.0 \%
$$

From Fig, 5, $W_{\text {sat }}=\frac{35.2 l 8 \mathrm{HoO}}{100 \mu \mathrm{silitagel}}=0.352 \frac{y \mathrm{Hto}}{\text { smitagel }}$
(b) Solute in :

$$
\begin{aligned}
& \left(\frac{\text { volume }}{\text { area. time }}\right)\left(\frac{\text { moles fowler }}{\text { sothime }}\right) \frac{\text { o sointe }}{\text { mieroute }} \\
& \left.=(13.1 \mathrm{~cm} / \mathrm{s})\left[\frac{\left(3 \times 101325 \mathrm{~Pa}^{\prime}\right)}{\left(2.344 \frac{\partial}{\mathrm{mok}}\right)(29215 \mathrm{~K})} \times \frac{1 \mathrm{~m}^{3}}{10^{5} \mathrm{~cm}^{3}}\right]\left(\frac{5270}{10^{6}}\right)\right) \\
& \rightarrow \times \frac{18.015_{2} \text { solve }}{\text { mol reince }} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}} \\
& =0.552 \frac{\mathrm{~g} \text { solute }}{\mathrm{cm}^{2}+\mathrm{h}}
\end{aligned}
$$

Solute out:

$$
\left(F_{A}\right)_{\text {out }}=u_{0} c^{\prime} M_{A}=\left(u_{0} c_{0} M_{A}\right)\left(c / c_{0}\right)=\left(F_{A}\right)_{\text {n }}\left(c / c_{0}\right)
$$

Solute accumulated: Solute accummbited in bed/area intimio interval $(t, t+d t)$ is $\left[\left(F_{A}\right)_{\text {in }}-\left(F_{A}\right)_{\text {out }}\right] d t$

$$
=\left(F_{A}\right)_{\text {in }}\left[1-\frac{c(L, t)}{c_{0}}\right] d t
$$

Solute accummieted/area from time 0 to t is given by

$$
\text { joints adsorbed/avea }=\left(F_{A}\right)_{\text {in }} \int_{0}^{t}\left[1-\frac{C\left(L \cdot t^{\prime}\right)}{C_{0}}\right] d t^{\prime} \text {. }
$$

Read of A^{\prime} weer of $c(L, t)$ from graph. Prepone tabla. Dreak-point time t_{b} is time at which $c\left(L, \epsilon_{6}\right)=0.10 C_{0}, 50 t_{6}=5 \mathrm{~h}$.

So: $\int_{0}^{t_{6}}\left[1-\frac{c(L .6)}{c_{0}}\right] d t=4.900 \mathrm{~h}$, and
($\frac{\text { man soints }}{\text { area }}$) adsorbed upto $t_{b}=\left(F_{h}\right)_{\text {in }}(4.900 \mathrm{~h})$
To get capacity in man sainte adsorbed/mam silicogel, use the fact that

$$
\begin{aligned}
& \left(\frac{\text { man silica gal }}{\text { area }}\right)=\frac{\text { bed vol. }}{\text { bed area }} \cdot \frac{\text { mam sitcozel }}{\text { bed vol. }}
\end{aligned}
$$

$$
\begin{aligned}
& =18.0 \frac{\mathrm{gslica} \mathrm{ael}}{\mathrm{~cm}^{2}}
\end{aligned}
$$

Then

$$
W_{b}=\frac{\text { man adsertad unto } t_{b}}{\text { man rilicesel }}
$$

t The trapezoid rub, /a. ${ }^{b} f(x) d x \cong \frac{b-a}{2}[f(a)+f(b)]$, for each interval
$=\frac{\text { man adroobed updo } t_{k} / \text { area }}{\text { man silica gal/area }}$

$$
\begin{aligned}
& =0.150 \% \text { sink }
\end{aligned}
$$

Fraction of ted capacity used at break-point

$$
=w_{b} / w_{\text {sent }}=0.150 / 0.352=0.426
$$

for 60 cm oed . Used length $=(0.426)(10 \mathrm{~cm})$

$$
=25.6 \mathrm{~cm}
$$

$$
\text { Soured length }=(60-25.6) \mathrm{cm}=34.4 \mathrm{~cm}
$$

Clued capacity of fed (in term of cquivalent bed length) at breal-point is $l_{\text {unused }}=34.4 \mathrm{~cm}$
(c) Scaleup principle - lunured at if independent of bed length. For new longe bed,

$$
\begin{aligned}
l_{\text {used }}=L-l_{\text {inured }} & =100 \mathrm{~cm}-34.4 \mathrm{~cm} \\
& =65.6 \mathrm{~cm}
\end{aligned}
$$

and $\frac{W_{b}}{W_{\text {rat }}}=\frac{l_{\text {used }}}{L}=\frac{65.6}{100}$

Man balance:

Solve for t_{6} :

$$
\begin{aligned}
& t_{b}=\frac{w_{b} L A_{c} P_{\text {bed }}}{\left(F_{\lambda}\right)_{n} A L_{c}}, \begin{array}{r}
\text { actually } \frac{w_{b}}{w_{s a d}} \cdot L \\
=l_{\text {ind }}=65.6 \mathrm{~cm}
\end{array} \\
& =\frac{\left(\frac{W_{b}}{W_{\text {sin }}}\right) W_{\text {sat }} L \rho_{\text {bed }}}{\left(F_{A}\right)_{\text {in }}}
\end{aligned}
$$

$t_{6}=12.5 \mathrm{~h}$
predicted broal-point time for 100 cm fed

