CE407 SEPARATIONS

Lecture 26

Instructor: David Courtemanche

Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

AZEOTROPIC SEPARATIONS

Azeotrope

- The T_{xv} diagram for Ethanol and water exhibits an azeotrope
- Around a mole fraction of 0.9 the liquid mole fraction and its equilibrium vapor mole fraction are equal

Vapor Liquid Equilibrium

- The VLE curve crosses the 45° line at x = y = 0.9
- One cannot get to an $x_D > 0.9$

Strategies for Breaking the Azeotrope

Extractive Distillation

- Using a third component to realize the separation
- One component is preferentially soluble in the third component
- Pressure Swing
 - The VLE curve is dependent on the total pressure
 - Distill the mixture up to the azeotrope at one pressure
 - Transfer to a different pressure which has an azeotropic point that is below the composition obtained in the first column

- Ethanol Water system
- Typical Fermentation process generates a mole fraction of 0.04 ethanol in ethanol/water mixture
- A traditional distillation column (C_0) brings the mixture up to an EtOH mole fraction of 0.80
 - Well below the azeotrope of 0.9
 - Removes most of the water
- This is fed into the next column, $C_1 \dots$

- In the reflux of column C_1 we add a stream of cyclohexane (CYH) as an entrainer
- EtOH water mixture has an azeotrope at 0.9 mole fraction EtOH and a temperature of 78.2 C
- Addition of CYH leads to three additional azeotropes, one of which is at the system minimum temperature of 62.6 C

- CYH is added to the decanter and enters the column as reflux
- The liquid going down the column is a heterogenous (two-phase) mixture
- The bottom stream can approach pure EtOH
- The vapor exiting the top stage can approach the ternary azeotrope V1 (the minimum temperature azeotrope)

FIGURE 15.4 Azeotropic separation with heterogeneous azeotropic distillation.

- The vapor is condensed to 40 C and becomes a heterogenous liquid
- It separates into an organic phase (which is rich in CYH) and an aqueous phase (which still contains significant amount of EtOH)
- The decanter separates the streams
- The organic stream goes back to column C1 as reflux
- The aqueous phase goes as feed to column C2

- The aqueous feed to column C2 is homogenous
- The bottoms stream draws out the water
- The distillate stream contains significant amounts of EtOH and is recycled back to the feed of column C1

FIGURE 15.4 Azeotropic separation with heterogeneous azeotropic distillation.

- Entrainer is added above the feed
 - Ethylene glycol is one possible entrainer
- The entrainer increases the relative volatility of the water and EtOH

FIGURE 15.5 Azeotropic separation with extractive distillation.

- Rectifying section separates EtOH from heavy entrainer
- Extractive Section suppresses water from going up with the vapor
- Stripping Section prevents EtOH from going down to bottom as liquid
- Second column separates water from entrainer
- Entrainer from second column bottoms is recycled to upper feed of the first column

FIGURE 15.5 Azeotropic separation with extractive distillation.

 \cap

Pressure Swing Method

- Methanol (MeOH) and Isopentane (iC5)
- Obviously, you cannot get past 0.8 mole fraction iC5 at either pressure using just one column

FIGURE 15.1 T-xy plots of methanol-isopentane system at (A) 2.5 atm, and (B) 13 atm.

Pressure Swing Method

- The low pressure column (LP) can produce distillate approaching the low pressure azeotrope of 0.78 mole fraction iC5 and can go no further
- The feed of the high pressure column (HP) has a mole fraction that is greater than the high pressure azeotrope of 0.65 mole fraction iC5
- We can therefore get to any desired purity specification

FIGURE 15.2 Azeotropic separation with pressure-swing distillation. *HP*, high pressure; *LP*, low pressure.

References

- Arit, W; Azeotropic Distillation, 2014, Gorak, A; Olujic, Z; Distillation: Equipment and Processes, Academic Press, London, 247-258
- Chien, I; Yu, B; Ai, Z, 2017; Design of Azeotropic Distillation Systems, Elsevier Inc, Boston
- Lei, Z; Chen, B; Ding, Z; 2005; Special Distillation Processes; Elsevier, Boston
- Luybe, W; 2013; More Complex Distillation Systems, John Wiley & Sons, Inc, Hoboken

CRYOGENIC DISTILLATION

There are many process that require large amounts of relatively pure oxygen or nitrogen

- Steel making
 - Basic Oxygen Steelmaking
 - Uses almost two tons of O₂ per ton of steel produced
- Ammonia
 - N₂ used in the Haber Process to make ammonia
- Coal Gasification
 - Coal, O₂, and water used to make Syngas
 - Syngas is mixture of CO, CH₄, H₂, CO₂, and H₂O
- Inert Gas
 - N2 used to blanket tanks containing flammable liquids

- So how do we get large quantities of the constituents of air?
- Air can be cooled until it is liquified
- The liquid air can then be distilled into pure components
- No surprise there are a lot of details to be covered in order to make this work!
- Composition of dry atmospheric air:

- First developed by Carl von Linde in 1895
- Industrial applications began in 1902
- Can produce high purity gases
- Very energy intensive!

- Air at or below a pressure of 1 bar must be cooled to -192 °C (81.5 K) before condensation begins
- Air at or below a pressure of 6 bar must be cooled to -172 °C (101 K) before condensation begins
- This is quite cold...

- Joule-Thomson Effect
 - At ordinary temperatures and pressures all real gases except hydrogen and helium cool upon expansion
 - The cooling occurs because work must be done to overcome the longrange attraction between gas molecules at they move further apart
 - H₂ and He have unusually weak long-range forces
 - A refrigeration cycle utilizes this phenomena to reduce the temperature of the gas

• T_{xv} diagram for Oxygen / Nitrogen Mixture

 \cap

Typical Process Steps

- 1. Removal of Dust Particles
 - Mechanical Filter removes dust at the inlet to the compressor
- 2. Air Compression
 - Multi-stage turbo compressor raise air pressure to approximately 6 bar
- **3.** Air Cooling and Purification
 - Air is cooled by direct contact with cooling water which also removes soluble air impurities
- 4. Adsorption
 - Water, Carbon dioxide, and other hydrocarbons are removed via adsorption in periodically loaded/regenerated molecular sieve adsorbers

23

• Without this step these materials would freeze at the cryogenic temperatures and blind over the column

Cryogenic Fractional Distillation Typical Process Steps, continued

- 5. Low-Temperature Heat Exchange
 - Process air is cooled nearly to liquefaction temperatures by means of countercurrent heat exchange with nitrogen waste gas from the rectification process
- 6. Cold Production and Internal Product Compression
 - Air is further compressed and then passed through an expansion turbine whereby it is cooled to liquid temperatures
- 7. Cryogenic Rectification of Air
 - Low pressure column produces Pure Oxygen (bottoms) and nitrogen waste gas (distillate)
 - High pressure column produces pure nitrogen gas (distillate)and oxygen enriched liquid (bottoms)
- 8. Cryogenic Rectification of Argon
 - Sidestream of argon enriched gas from low pressure column goes to series of two columns to produce pure argon

PARTIAL CONDENSORS REVISITED

Partial Condensers McSH pp 674-675

- A total condenser converts the total vapor flow to liquid flow
 - Therefore the entering vapor and exiting liquid have the same composition

 $x_{D} = x_{0} = y_{1}$

- A partial condenser only converts a portion of the vapor flow to liquid
 - The composition of the vapor and liquid exiting are in equilibrium with one another and differ from the composition of the entering vapor.

$$y' = y^*(x_0) = x_D \neq y_1 \neq x_0$$
$$x_0 = x^*(y')$$

• A secondary condenser then converts the rest of the vapor to a liquid

Partial Condensers and McCabe-Thiele

- Because of the equilibrium relationship between the vapor and liquid exiting the partial condenser there is separation being accomplished
- The first step on the McCabe-Thiele is the partial condenser
 - This step does NOT count as a stage
 - Stages are actual trays in the column

 Make sure you know whether the condenser is a Total Condenser or a Partial Condenser

Partial Condensers and McCabe-Thiele

- Note that the same y' is equal to x_D no matter what Reflux ratio is used
- Note that the required x_0 is NOT dependent on the Reflux Ratio
 - It is the liquid mole fraction in equilibrium with vapor x_D
- Note that the required y_1 is dependent on the Reflux Ratio

Continuous Distillation – Enthalpy Balances with Total Condenser McSH pp 694-701, pp 679, 682 eq 21.1 and 21.2

• How much energy does one need to remove via condenser?

Total Condenser

Control Volume
around condenser

• Heat added = Enthalpy out – enthalpy in

$$-q_c = DH_D + L_0H_{x,0} - V_1H_{y,1}$$
$$= (D + L_0)H_{x,0} - V_1H_{y,1}$$

Note: q_c is defined as the amount of heat REMOVED via the condenser and is a positive number. The enthalpy balance is the amount of heat added, therefore the q term appears as -q_c in the equation. The fact that -q_c is therefore a negative term is consistent with the fact that we are removing heat to affect a phase 30 change from vapor to liquid

Enthalpy Balances: Total Condenser, continued

- $-q_c = (D + L_0)H_{x,0} V_1H_{y,1}$
- But from mass balance we know that $V_1 = D + L_0$
- $-q_c = (D + L_0)H_{x,0} (D + L_0)H_{y,1}$
- And from definition of reflux ratio $L_0 = D R$

$$-q_c = D(1+R)\big(H_{x,0}-H_{y,1}\big)$$

- It's not as simple as just looking at Heats of Vaporization
- You have the temperature changing from Dew Point to Bubble Point
- Heats of Vaporization are defined for a pure material at a given temperature (usually the normal boiling temperature for pure material) and we are condensing over a range of temperatures

Continuous Distillation – Enthalpy Balances with Partial Condenser

• Heat added = Enthalpy out – enthalpy in

 $-q_c = DH_D + L_0H_{x0} - V_1H_{y1}$

- $-q_c = DH_y(x_D) + L_0H_x(x_0) V_1H_y(y_1)$
- From definition of reflux ratio $L_0 = D * R$
- From mass balance we know that $V_1 = D + L_0 = (1 + R)D$
- $-q_c = DH_y(x_D) + (DR)H_x(x_0) (1+R)DH_y(y_1)$
- Note that $H_y(x_D)$ is a saturated VAPOR Phase Enthalpy at x_D
- $H_x(x_0)$ is a saturated LIQUID Phase enthalpy at x_0
- x_0 is the liquid mole fraction in equilibrium with vapor having a mole fraction equal to x_D
- They are NOT at the same temperature
- y_1 is the mole fraction of the vapor exiting stage 1
- y_1 is dependent on the reflux ratio, which sets the operating line!

Partial Condensers Revisited

- Final Condenser Enthalpy Balance
 - Heat added = Enthalpy out enthalpy in

 $-q_{fc} = DH_D - DH_{y'}$ $-q_{fc} = DH_x(x_D) - DH_y(x_D)$

•
$$-q_{fc} = D[H_x(x_D) - H_y(x_D)]$$

Partial Condensors Revisited

- Both condensers together
- Looks somewhat similar to the Total Condenser case...
 - Heat added = Enthalpy out enthalpy in

 $-q_c = DH_D + L_0H_{x,0} - V_1H_{y,1}$

• But, of course, $x_D \neq x_0 \neq y_1$

•
$$-q_c = DH_x(x_D) + L_0H_x(x_0) - V_1H_y(y_1)$$

- $-q_c = DH_x(x_D) + RDH_x(x_0) (R+1)DH_y(y_1)$
- Note difference from Partial Condenser Enthalpy Balance is that the exiting distillate stream is now liquid phase whereas when evaluating the partial condenser by itself it was vapor phase

