CE407 SEPARATIONS

Lecture 25

Instructor: Miao Yu

University at Buffalo
Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

世五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Adsorption Fundamentals

－The last lecture looked at Adsorption as an observation of typical results
－Today we will look at it from more of a viewpoint of fundamental principles
－Did someone say＂Material Balances＂？

－The concentration of solute in the solution， \boldsymbol{c} ，is changing because the solute is being adsorbed onto the surface of the adsorbent solid
－The change in superficial velocity is small for a dilute solution and we will treat it as a constant， $\boldsymbol{u}_{\mathbf{0}}$
－$\quad \epsilon$ is the external void fraction（i．e．How much open space exists around the particles）
－$(1-\boldsymbol{\epsilon})$ is the fraction of space taken up by the adsorbent particles

世衁 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Adsorption Fundamentals

－The change in the amount of solute per unit cross－sectional area is：

$$
u_{0} c-u_{0}(c+d c)=-u_{0} d c
$$

what goes in the control volume－what leaves the control volume＝change in amount in control volume
－The change in the amount of solute results from two different causes：
1）The change in the fluid concentration

$$
\epsilon d l \frac{\partial c}{\partial t}
$$

$\boldsymbol{\epsilon} \boldsymbol{d} \boldsymbol{l}$ is the volume of fluid in the control volume per unit cross－sectional area
$\frac{\partial c}{\partial t}$ is the change in concentration（mass／volume）with respect to time
2）The change in surface adsorption

$$
(1-\epsilon) d l \rho_{p} \frac{\partial w}{\partial t}
$$

世衁 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Adsorption Fundamentals

－The change in surface adsorption

$$
(1-\epsilon) d l \rho_{p} \frac{\partial w}{\partial t}
$$

－$(\mathbf{1}-\boldsymbol{\epsilon}) d l$ is the volume occupied by particles in the control volume per unit cross－sectional area
－ $\boldsymbol{\rho}_{p}$ is the mass of particles per unit volume
－$(1-\epsilon) d l \rho_{p}$ is the mass of particles in the control volume per unit cross－sectional area
－$\frac{\partial w}{\partial t}$ is the change with respect to time of the $\frac{\text { mass of solute adsorbed }}{\text { mass of adsorbent particles }}$
－The two causes added to one another must equal the change in the amount of solute in the control
volume per unit cross－sectional area，therefore we arrive at this partial differential equation：

$$
\epsilon \partial l \frac{\partial c}{\partial t}+(1-\epsilon) \partial l \rho_{p} \frac{\partial w}{\partial t}=-u_{0} d c
$$

$$
\epsilon \frac{\partial c}{\partial t}+(1-\epsilon) \rho_{p} \frac{\partial w}{\partial t}=-u_{0} \frac{\partial c}{\partial l}
$$

Mass Transfer to Adsorbent Particles

Three Steps：

1）Diffusion through film layer around the particle
2）Diffusion through pores into internal surfaces
3）Actual adsorption step

－Practically instantaneous relative to steps 1 ）and 2 ）
This can be modeled as：

$$
(1-\epsilon) \rho_{p} \frac{\partial w}{\partial t}=K_{c} a\left(c-c^{*}\right)
$$

\boldsymbol{a} is the external surface area of the particles
\boldsymbol{c}^{*} is the concentration value in equilibrium with \boldsymbol{w}
－Obtained via the isotherm

$$
\frac{1}{K_{c}}=\frac{1}{k_{c_{\text {ext }}}}+\frac{1}{k_{c_{\text {int }}}}=\frac{1}{\text { Film Resistance }}+\frac{1}{\text { Pore Resistance }}
$$

－These equations are not generally solvable，but there are special cases that can be worked out

五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Regeneration

- If the particles and the product can withstand high temperatures, then you can use heat to release the product from the adsorbent

- At higher temperature the equilibrium shifts and the adsorbent releases the solute
- Use a back flow of steam or air (if the materials are all non-flammable) or N_{2}
- Regeneration is stopped soon after the temperature front reaches the feed entrance
- A significant amount of adsorbed material remains which means breakthrough time is reduce8,
- Exit end is almost fully regenerated so that high percentage removal of solute is still possible
- Balance of energy cost per cycle versus length of cycle

T University at Buffalo

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

```
This problem deals with some experiments performed in Elroy
Hutch's laboratory on adsorption of n-hexanol from air in a
1 0 \mathrm { cm } l o n g ~ c a r b o n - f i l l e d ~ b e d . ~ M e a s u r e d ~ c o n c e n t r a t i o n ~ p r o f i l e s ~
are shown in Fig. 1 for various times after the initial time t = 0,
with x = distance along bed.
    Details of the experiment are as follows:
u}=\mathrm{ superficial gas velocity = 72 cm / s
cos}=250\textrm{ppm}\mathrm{ hexanol (ppm = mole fraction }\times1\mp@subsup{0}{}{6}\mathrm{ )
T
p}=690\textrm{mm Hg
R解 = 0.45 g carbon / cm cm bed volume
You may assume that c(L,t) = 0 for }t\leqslant2h\mathrm{ and }c(L,t)=c, for
for t }\geqslant9\textrm{h}
（a）Prepare in either graphical or numerical form a representation of the breakthrough curve．
（b）Calculate the saturation capacity of the carbon and the fraction of the bed used（in terms of equivalent bed length） at the beakpoint if this is defined according to the criterion \(c\left(L, t_{b}\right)=0.10 c_{0}\) ．
（c）Assuming that the unused length of bed is independent of total bed length，estimate the break－point time for a 20 cm long bed．
```


- T University at Buffalo

世五 $\begin{aligned} & \text { Department of Chemical } \\ & \text { and Biological Engineering }\end{aligned}$
School of Engineering and Applied Sciences

$t(h)$	$c(L, t) / C_{0}$
0	0
2	0
3	0.02
4	0.10
5	0.30
6	0.70
7	0.90
8	1

玉3 Department of Chemical
 and Biological Engineering
 School of Engineering and Applied Sciences

あ Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

$$
w(t)=\frac{\int_{0}^{t} F_{\text {A in }}\left(1-\frac{c}{c_{0}}\right) d t}{L \rho_{\text {bed }}} \quad \frac{w_{b}}{w_{\text {sat }}}=\text { fraction of bed utilized }
$$

T| University at Buffalo

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

(c)

$$
t_{b 2 / t_{b 1}}=\frac{L_{2} *\left(1-\frac{L U B}{L_{2}}\right)}{L_{1} *\left(1-\frac{L U B}{L_{1}}\right)}
$$

工お University at Buffalo

五 Department of Chemical
and Biological Engineering
School of Engineering and Applied Sciences

This problem deals with some experiments performed in Elroy Hutch＇s laboratory on adsorption of water from air in a bed filled with silica gel （length $L=60 \mathrm{~cm}$ ）．Measured concentration profiles are shown in Fig． 4 for various times after the initial time $t=0$ ，with $x=$ distance along bed．You may assume that $c(L, t)=0$ for $t \leq 2 h$ ．Details of the experiment are as follows：
${ }^{u_{0}}=$ superficial gas velocity $=13.1 \mathrm{~cm} / \mathrm{s} ;$
$y_{0}=$ water mole fraction in entering gas $=5210 \times 10^{-6}$ ；
$T=20^{\circ} \mathrm{C}$ ；
$\mathrm{P}=3.0 \mathrm{~atm} ;$
$P_{\text {bed }}=0.30 \mathrm{~g}$ silica gel $/ \mathrm{cm}^{3}$ bed volume
The break－point time t_{b} is defined by the criterion $c\left(L, t_{b}\right)=0.10 c_{o}$ ．
Elroy abandoned the experiment after 5 hours（to go buy some bananas to eat）．Thus，insufficient data exist to determine the saturation capacity of the bed by time integration．Figure 5 will allow you to deteraine $W_{\text {sat }}$ by alternate means．
（a）（10 points）What is the saturation capacity of the bed $W_{\text {sat }}$ in g water／g silica gel？
（b）（ 30 points）What is the unused capacity of the silica gel（in terms of equivalent bed length）at the break－point？
（c）（ 10 points）Estimate the break－point time for a longer bed length of 100 cm ，all other conditions being equal．

Data：vapor pressure of water

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{3 \mathrm{O}} \quad(\mathrm{mm} \mathrm{Hg})$
20	19.8
30	31.8
40	55.3

- University at Buffalo

E五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

th

Figure 24-3 Adsorption isotherms for water is air at 20 to $50^{\circ} \mathrm{C}$.

School of Engineering and Applied Sciences

2

University at Buffalo

53 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

$$
\begin{aligned}
w(t) & =\frac{\int_{0}^{t} F_{A \text { in }}\left(1-\frac{c}{c_{0}}\right) d t}{L \rho_{\text {bed }}} \\
\frac{w_{b}}{w_{\text {sat }}} & =\text { fraction of bed utilized }
\end{aligned}
$$

University at Buffalo

G五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences
(c)

$$
t_{b 2 / t_{b 1}}=\frac{L_{2} *\left(1-\frac{L U B}{L_{2}}\right)}{L_{1} *\left(1-\frac{L U B}{L_{1}}\right)}
$$

University at Buffalo

G五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

C五 University at Buffalo

hemical and Biological Engineering
School of Engineering and Applied Sciences

```
This problem deals with some experiments performed in Elroy
Hutch's laboratory on adsorption of n-hexanol from air in a
10 cm long carbon-filled bed. Measured concentration profiles
are shown in Fig. 1 for various times after the initial time t = 0,
with x = distance along bed.
    Details of the experiment are as follows:
u = superficial gas velocity = 72 cm / s
CO}=250 ppm hexanol (ppm = mole fraction x 106)
T}=5
P}=690\textrm{mm Hg
p}=690\textrm{mm}\mathrm{ Rg carbon / cm
You may assume that c(L,t) = 0 for }t\leqslant2h\mathrm{ and }c(L,t)=\mp@subsup{c}{0}{}\mathrm{ for
for t}\geqslant9\textrm{h}
(a) Prepare in either graphical or numerical form a representation
    of the breakthrough curve.
(b) Calculate the saturation capacity of the carbon and the
    fraction of the bed used (in terms of equivalent bed length)
    at the beakpoint if this is defined according to the
    criterion c(L, tb})=0.10 co
(c) Assuming that the unused length of bed is independent of total bed length, estimate the break-point time for a 20 cm long bed.
```


T - University at Buffalo

and Biological Engineering
School of Engineering and Applied Sciences

G五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

$$
w(t)=\frac{\int_{0}^{t} F_{A \text { in }}\left(1-\frac{c}{c_{0}}\right) d t}{L \rho_{b e d}}
$$

$\frac{w_{b}}{w_{s a t}}=$ fraction of bed utilized

T五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

University at Buffalo

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences
(c)

$$
t_{b 2 / t_{b 1}}=\frac{L_{2} *\left(1-\frac{L U B}{L_{2}}\right)}{L_{1} *\left(1-\frac{L U B}{L_{1}}\right)}
$$

$t_{b 1}=4 \mathrm{~h} ; \quad L_{2}=20 \mathrm{~cm} ;$

$$
L_{1}=10 \mathrm{~cm} ; \quad L U B=2.85 \mathrm{~cm}
$$

$$
t_{b}=9.6 \mathrm{~h}
$$

工お University at Buffalo

五 Department of Chemical
and Biological Engineering
School of Engineering and Applied Sciences

This problem deals with some experiments performed in Elroy Hutch＇s laboratory on adsorption of water from air in a bed filled with silica gel （length $L=60 \mathrm{~cm}$ ）．Measured concentration profiles are shown in Fig． 4 for various times after the initial time $t=0$ ，with $x=$ distance along bed．You may assume that $c(L, t)=0$ for $t \leq 2 h$ ．Details of the experiment are as follows：
${ }^{u_{0}}=$ superficial gas velocity $=13.1 \mathrm{~cm} / \mathrm{s} ;$
$y_{0}=$ water mole fraction in entering gas $=5210 \times 10^{-6}$ ；
$T=20^{\circ} \mathrm{C}$ ；
$\mathrm{P}=3.0 \mathrm{~atm} ;$
$P_{\text {bed }}=0.30 \mathrm{~g}$ silica gel $/ \mathrm{cm}^{3}$ bed volume
The break－point time t_{b} is defined by the criterion $c\left(L, t_{b}\right)=0.10 c_{o}$ ．
Elroy abandoned the experiment after 5 hours（to go buy some bananas to eat）．Thus，insufficient data exist to determine the saturation capacity of the bed by time integration．Figure 5 will allow you to deteraine $W_{\text {sat }}$ by alternate means．
（a）（10 points）What is the saturation capacity of the bed $W_{\text {sat }}$ in g water／g silica gel？
（b）（ 30 points）What is the unused capacity of the silica gel（in terms of equivalent bed length）at the break－point？
（c）（ 10 points）Estimate the break－point time for a longer bed length of 100 cm ，all other conditions being equal．

Data：vapor pressure of water

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{3 \mathrm{O}} \quad(\mathrm{mm} \mathrm{Hg})$
20	19.8
30	31.8
40	55.3

- University at Buffalo

E五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

H_{R}

Figure 24-3 Adsorption isotherms for water is air at 20 to $50^{\circ} \mathrm{C}$.
(a) Incoming ain: $P_{\mathrm{H}_{2} \mathrm{O}}=y \mathrm{H}_{2} \mathrm{O} P$

$$
\begin{aligned}
& =y / 120 \mathrm{P} \\
& =\left(521010^{-6}\right)\left(3 \mathrm{~atm} \times \frac{760 \mathrm{mm+5}}{1 \mathrm{~atm}}\right)
\end{aligned}
$$

(at or) $P_{\mathrm{H}_{2} \mathrm{ol}}^{\mathrm{sit}}=19.8 \mathrm{~mm} \mathrm{Hig}$. Then

$$
=11.88 \mathrm{mmHz}
$$

$$
W_{R}=(100 \%) \frac{p_{\mathrm{H}_{20} \mathrm{O}}}{P_{H_{20}}^{\text {set }}}=(100 \%) \frac{11.88}{19.8}=60.0 \%
$$

From Fig. 5, $\quad W_{\text {sat }}=\frac{35.2 \mathrm{lb} \mathrm{HzO}}{100 \mathrm{ls} \text { sitisagel }}=0.352 \frac{5 \mathrm{HLO}}{\text { sflicagl }}$

University at Buffalo

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

$$
w(t)=\frac{\int_{0}^{t} F_{A \text { in }}\left(1-\frac{c}{c_{0}}\right) d t}{L \rho_{\text {bed }}}
$$

$\frac{w_{b}}{w_{\text {sat }}}=$ fraction of bed utilized

$$
\begin{aligned}
& \text { (b) Solute in: Wsat }
\end{aligned}
$$

$$
\begin{aligned}
& \left.=(13.1 \mathrm{~cm} / \mathrm{s})\left[\frac{\left(3 \times 101325 P_{4}^{5}\right)}{\left(0.314 \frac{5}{m 2 k}\right)(29215 \mathrm{~K})} \times \frac{1 \mathrm{~m}^{3}}{10^{5} \mathrm{~cm}^{3}}\right]\left(\frac{5270}{10^{6}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =0.552 \frac{\text { g solute }}{\mathrm{cm}^{2} \cdot \mathrm{~h}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Read of wlue of } c(L, t) \text { from groph. Prepane } \\
& \text { taile. Break-point time } t_{b} \text { is time at which } \\
& c\left(L, t_{b}\right)=0.10 C_{0} \text {, 50 } t_{b}=5 \mathrm{~h} \text {. Contrib. to integral t } \\
& t(h) \quad \frac{c(L, t)}{C_{0}} \quad 1-\frac{c(L, t)}{c_{0}} \quad \int_{0}^{t}\left(1-\frac{c_{0}}{c_{0}}\right) d t^{\prime}(h)
\end{aligned}
$$

0	0	1		
2	0	1		
3	0.01	0.99		
4	0.04	0.96		
$t_{6} \rightarrow 5$	0.10	0.90	$>$	2.000
:---				
0.995				
0.975				
0.930				
4.900				

So: $\int_{0}^{t_{6}}\left[1-\frac{c(L, t)}{c_{0}}\right] d t=4.900 \mathrm{~h}$,
and ($\frac{\text { mam sounts }}{\text { area }}$
ure the fact that

$$
\left(\frac{\text { man siticagal }}{\text { area }}\right)=\frac{\text { bed wol. }}{\text { bed area }} \cdot \frac{\text { man sitita gel }}{\text { bed vol. }}
$$

$$
=L \rho_{\text {bed }}-(60 \mathrm{~cm})\left(0.30 \frac{\mathrm{~g} \frac{1 / \mathrm{cag})^{2}}{\mathrm{~cm}^{2}} \mathrm{c}}{}\right.
$$

$$
=18.0 \frac{\mathrm{~g} \text { silicasel }}{\mathrm{cm}^{2}}
$$

Then

$$
W_{b}=\frac{\text { man adsorbed upto } t_{b}}{\text { man silicesel }}
$$

- Ure trapeziod rule, $\int_{a}^{b} f(x) d x \cong \frac{b-a}{2}[f(a)+f(b)]$, for each interval

T University at Buffalo

C五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

$$
\begin{aligned}
& =\text { mam adroubed plo } t_{b} \text { /anna } \\
& W_{b}=\frac{\left(F_{A}\right) \operatorname{man}(4.900 \mathrm{~h})}{\left(L P_{b e d}\right)}=\frac{\left(0552 \frac{\sum_{\text {solute }}}{\mathrm{cm}^{2} \mathrm{~h}}\right)(4.400 \mathrm{~h})}{18.0 \frac{g \text { silicesel }}{\mathrm{cm}^{2}}} \\
& =0.150 \% \text { joint } \\
& \text { Fraction of the capacity used at freak-point } \\
& =w_{b} / w_{\text {set }}=0.150 / 0.352=0.426 \\
& \text { for } 60 \mathrm{~cm} \text { bed. Used length }=(0.426)(10 \mathrm{~cm}) \\
& =25.6 \mathrm{~cm} \\
& \text { (cured length }=(60-25.6) \mathrm{cm}=34.4 \mathrm{~cm} \\
& \begin{array}{l}
\text { (Imword capacity of fed (in terms of equivalent } \\
\text { bed length) at breaL-point is } l_{\text {unused }}=34.4 \mathrm{~cm}
\end{array}
\end{aligned}
$$

_ University at Buffalo

世互 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences
(c)

$$
t_{b 2 / t_{b 1}}=\frac{L_{2} *\left(1-\frac{L U B}{L_{2}}\right)}{L_{1} *\left(1-\frac{L U B}{L_{1}}\right)}
$$

$\boldsymbol{t}_{\boldsymbol{b} 1}=5 \mathrm{~h} ; \quad \boldsymbol{L}_{2}=100 \mathrm{~cm} ;$
$L_{1}=60 \mathrm{~cm}$;
$\boldsymbol{L} \boldsymbol{U} \boldsymbol{B}=34.4 \mathrm{~cm}$

$$
\boldsymbol{t}_{\boldsymbol{b} \mathbf{2}}=12.8 \mathrm{~h}
$$

