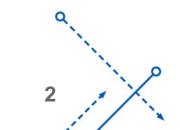
CE407 SEPARATIONS

Lecture 24

Instructor: Miao Yu

Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

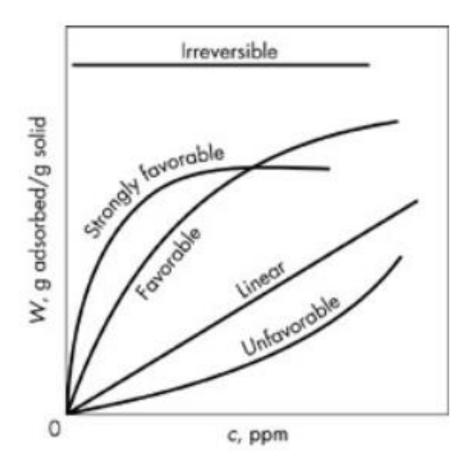


Exam 2

Time: 9:30-10:50 am, Thursday, 11/30/2023 Coverage: Lectures 13-23, Homework 7-12

You will be allowed to bring <u>one sheet (both sides) of 8 $\frac{1}{2}$ x 11" notes, <u>a calculator</u> and <u>straight edge</u></u>

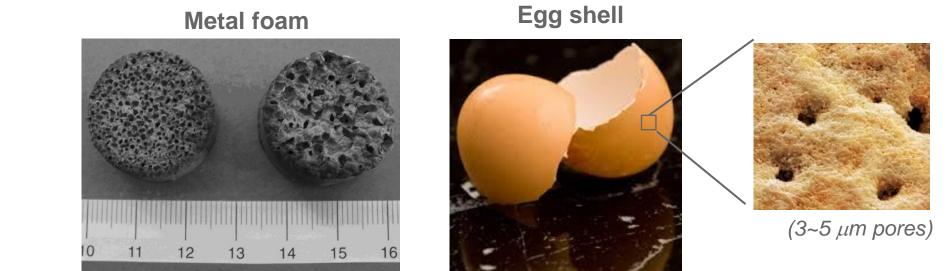
You will be provided with necessary graphs and/or graph paper

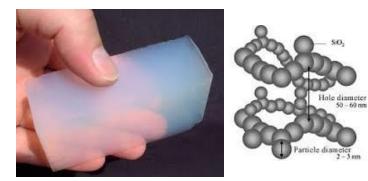


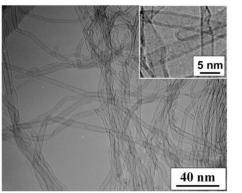
Adsorption

- Gas or liquid flows over a porous solid
 - The solid is called adsorbent
- Solute attaches to the solid, removing it from the liquid or vapor

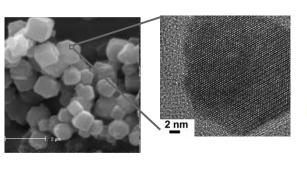
Isotherms


- Isotherms are the equilibrium data for Adsorption
 - $W = \frac{Mass \, of \, adsorbate \, on \, solid}{Mass \, of \, adsorbate \, on \, solid}$
 - VV = Original Mass of solid
- Adsorbate is the solute which has become attached to the solid (adsorbent)
- You can see that if the fluid has a higher concentration then the amount adsorbed increases
- "Favorable" indicates that there is high adsorption, W, even at lower concentrations





Silica aerogel

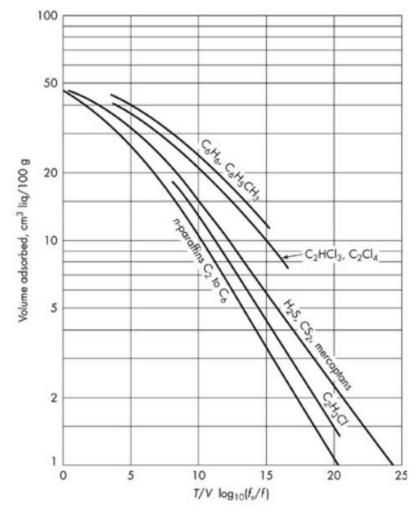


Bulk density is ~0.1g/cm³

Carbon nanotubes

Zeolites

4

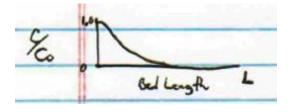


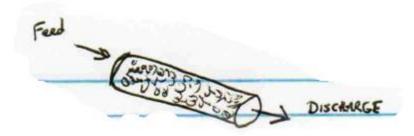
Isotherm Properties

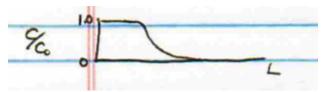
• All systems show decrease in the amount adsorbed as temperature increases

Temperature Dependence

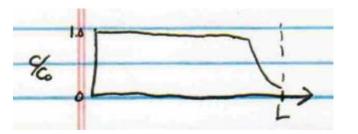
- Abscissa of graph is $\left(\frac{T}{V}\right) log_{10}\left(\frac{fs}{f}\right)$
- Where
 - T is adsorption temperature in Kelvin
 - V is the molar volume of the liquid at its boiling point
 - f_S is the fugacity of saturated liquid at temperature **T**
 - $f_S \approx P^{sat}(T)$
 - *f* is the fugacity of the vapor
 - $f \sim partial \ pressure = y_i P$
- As **T** increases **V** and *f* are relatively constant
- As **T** increases **T** and f_S increase
- We therefore move to the right on the graph and the ability to adsorb decreases

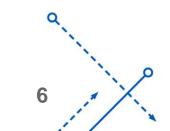



5


Fixed Beds

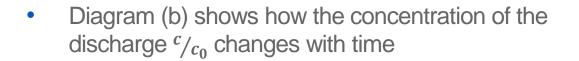
- Initially $W = W_0$ across the entire bed
 - $W_0 = 0$ for fresh material
- The first fluid to enter the bed has its solute adsorbed early in the bed
- The discharge at this point has c = 0

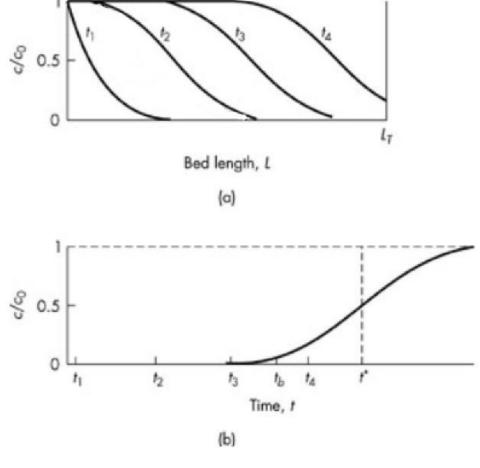




• Soon the solids at the entrance to the bed become saturated relative to c_0

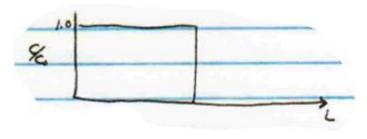
- Eventually this profile travels down the bed as more adsorbent becomes saturated
- The discharge now becomes $c \neq 0$

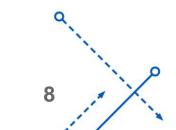




Fixed Beds – concentration profiles

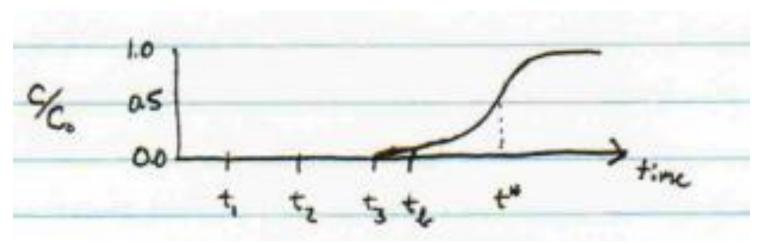
- Diagram (a) shows profiles of concentration c/c_0 versus position in the bed
 - The various curves show how the profile progresses with time

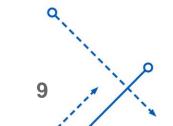




Fixed Beds – ideal concentration profile

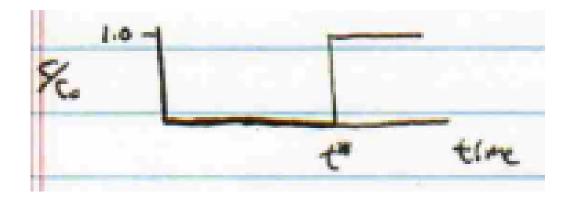
- Requirements
 - Plug flow of fluid
 - Adsorption is immediate
- This would lead to a concentration profile where the adsorbent at one location fully saturates before adsorbent immediately adjacent begins to adsorb any solute
- This won't be observed because
 - There will most likely be a velocity profile other than true plug flow
 - The solute needs to work its way into the pores so it takes time to saturate the adsorbent at any given location and the concentration profile will spread out

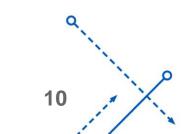




Breakpoint

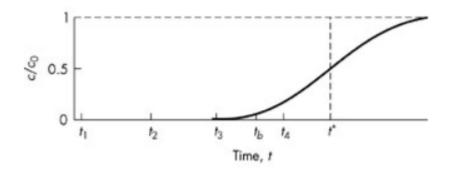
Concentration profile: Discharge Concentration versus Time

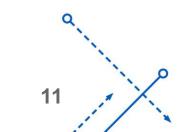

- When c_{c_0} reaches a limiting permissible level, aka the Breakpoint
 - Perhaps $c_{c_0} = 0.05$
- Flow is stopped or diverted to a fresh bed (if running multiple beds in parallel)
- This low concentration material is blended into all of the relatively pure material that preceded it so the overall concentration of material collected is still very close to 0
- t_b is the time where c_{c_0} reaches the specified breakpoint



Vertical Breakthrough

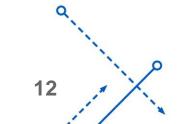
- *t*^{*} is the ideal adsorption time for vertical breakthrough
 - The time at which discharge concentration c_{c_0} goes from 0 to 1 instantaneously





Calculations...

- The area between the line $c/c_0 = 1$ and the concentration curve is proportional to the total solute that has been adsorbed
 - When $c_{c_0} = 0$, all of the material that has entered the bed has been adsorbed and therefore the fluid being discharged is free of solute
 - When $c_{c_0} = 1$ the fluid being discharged is at its feed concentration and therefore no more solute is being adsorbed

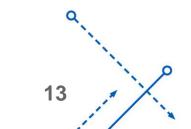


Calculations...

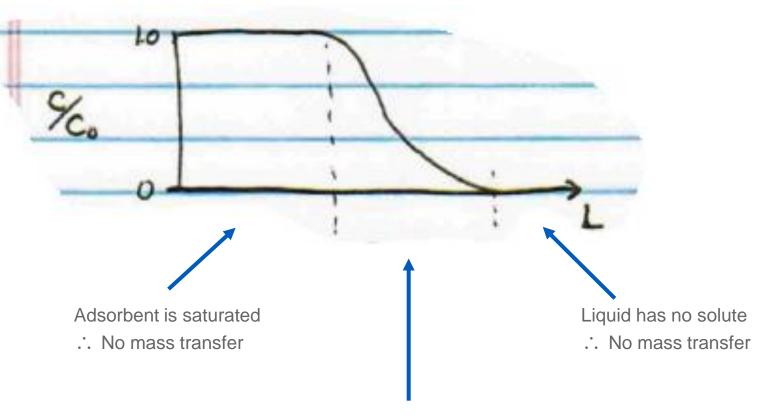
- Solute feed rate = $u_0 c_0 S$
 - u_0 = superficial velocity
 - c_0 = feed concentration
 - *S* = cross-sectional area of the bed
 - This is for the whole bed and does not take into account the adsorbent filling up space

• Solute Flux =
$$\frac{Solute Feed Rate}{cross-sectional area} = \frac{u_0 c_0 S}{S} = u_0 c_0 = F_A$$

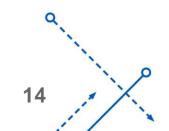
- For an ideal breakthrough curve all the solute fed is adsorbed from time t = 0 up until time $t = t^*$ at which point the discharge concentration goes from $c/c_0 = 0$ to $c/c_0 = 1$
- Also, at this time the concentration of solute on the adsorbent is w_{sat}
- w_{sat} is the saturated concentration on the solid relative to c_0
 - This is the value obtained from the isotherm



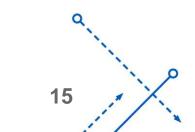
Calculations...


- $u_0 c_0 S t^* = S L \rho_b (w_{sat} w_0)$
 - S is the cross-sectional area of the bed
 - L is the length of the bed
 - ρ_b is the bulk density of the adsorbent in the bed
 - $SL \rho_b$ is therefore the mass of adsorbent in the bed
 - $w_{sat} w_0$ is the change in mass of solute per mass of adsorbent
 - The breakthrough time can be calculated as:

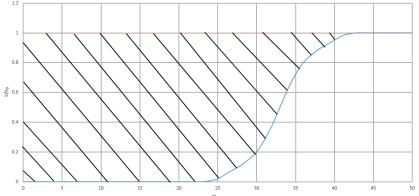
$$t^* = \frac{L \,\rho_b \,(w_{sat} - w_0)}{u_0 \,c_0}$$

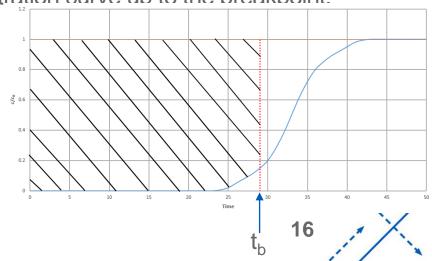


Mass Transfer Zone


Mass transfer is occurring here

Breakpoint

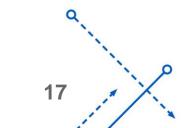

- Defined as the time, t_b , where c_{c_0} reaches a specified cutoff level
- At this point you need to stop using the bed and regenerate the adsorbent
 - You can stop the process or you can switch to a parallel bed
 - There are energy costs with the regeneration so you don't want to regenerate any more often than you have to
 - The longer you wait to regenerate, the more solute that you allow to pass through the bed
- The adsorbent in the Mass Transfer Zone is not saturated
 - We are therefore not getting the full utilization of the bed
- A wide Mass Transfer Zone means more of the bed is underutilized at time t_b



Bed Utilization

- Complete breakthrough is at the time where c/c_0 reaches a value of 1
- Integrate the area between the line $c/c_0 = 1$ and the discharge concentration curve up to complete breakthrough. This is proportional to the capacity of the bed to adsorb.

- Integrate the area between the line $c_{c_0} = 1$ and the discharge concentration curve up to the breakpoint. This is proportional to the amount of solute actually adsorbed.
 - Note the area under the concentration curve that is not included in the integral
- The ratio of these two areas is the fraction of the bed capacity that has been utilized at the breakpoint

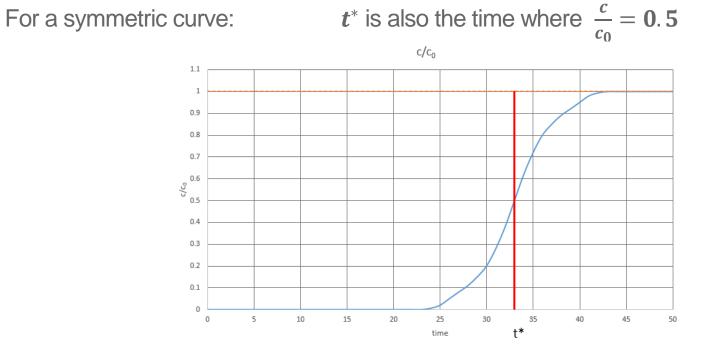

Bed Utilization

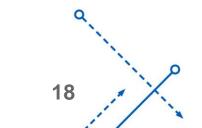
• The mass of material adsorbed on the bed at a given time is

$$w(t) = \frac{\int_0^t F_{Ain}\left(1 - \frac{c}{c_0}\right) dt}{L \rho_{bed}}$$

- $F_{A in}$ is the solute mass flow rate per cross-sectional area of the feed
- $L \rho_{bed}$ is the mass of adsorbent per cross-sectional area
- $w_b = w(t_b)$ is the mass of solute adsorbed on bed at time t_b
- $w_{sat} = w(\infty)$ is the mass of solute adsorbed when the bed is saturated
 - Note that time ∞ is any time AFTER $\frac{c}{c_0}$ has reached a value of 1

 $\frac{w_b}{w_{sat}} = fraction \, of \, bed \, utilized$





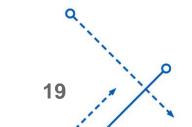
Bed Utilization

- 1 *ratio of areas* = $1 \frac{w_b}{w_{sat}}$ = UNUSED fraction of bed
- UNUSED fraction of bed * L = LUB LUB = Length of Unused Bed

$$t_b = t^* * fraction of bed utilized = t^* * \left(1 - \frac{LUB}{L}\right)$$

 \cap

Scale Up Principles


- Must use same Adsorbent Particles and have the same superficial velocity
- When using an adsorbent with a Favorable Isotherm, the Mass Transfer Zone concentration curve obtains a characteristic shape and width early on and then that shape progresses down the bed without changing
- Meaning that for the same system (solute, solvent, adsorbent, temperature, etc.) the LUB is independent of the length of the bed

$$t_b = t^* * \left(1 - \frac{LUB}{L}\right)$$

• Increasing L from L_1 to L_2 will increase t_b by two different factors:

$$\frac{t_2^*}{t_1^*} = \frac{L_2}{L_1}$$

and the factor
$$\left(1 - \frac{LUB}{L_1}\right)$$
 becomes $\left(1 - \frac{LUB}{L_2}\right)$

Scale Up Principles

$$t_b = t^* * \left(1 - \frac{LUB}{L}\right)$$

• Therefore the ratio of t_{b2}/t_{b1} becomes

$$t_{b2}/t_{b1} = \frac{t_2^* * \left(1 - \frac{LUB}{L_2}\right)}{t_1^* * \left(1 - \frac{LUB}{L_1}\right)}$$

• Which is

$$t_{b2}/t_{b1} = \frac{L_2 * \left(1 - \frac{LUB}{L_2}\right)}{L_1 * \left(1 - \frac{LUB}{L_1}\right)}$$

0

Scale Up Principles

- We start with bench top / pilot plant experiments to determine LUB and breakthrough time, t_{b1}
 - Use the same solute and solvent as in proposed production scale bed
 - Use the same Adsorbent as in proposed production scale bed
 - Use greatly reduced flow rate of solution
- Determine the needed diameter of Production Scale Bed
 - This diameter will give same superficial velocity with the production flow as was used in the experimental testing
- Select a targeted Breakthrough time, t_{b2}
- Determine the required length of the Production Scale Bed to obtain the desired breakthrough time
 - LUB is constant from the test bed to the production bed!

$$t_{b2}/t_{b1} = \frac{L_2 * \left(1 - \frac{LUB}{L_2}\right)}{L_1 * \left(1 - \frac{LUB}{L_1}\right)}$$