CE407 SEPARATIONS

Lecture 23

Instructor: Miao Yu

Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Design of Packed Towers

- Even distribution of liquid flow across the cross-sectional area of the tower
- Good wetting of the packing
 - Avoid channeling
 - More likely with stacked packing than with dumped packing
 - Minimize flow down walls
 - Diameter of tower should be > 8x the dimension of the packing
- Desire enough open space for vapor flow
 - Want to reduce ΔP through the tower

Types of Packing

- First packing was gravel
- Maximize surface area
- Lots of open space for vapor flow
- Shapes that do not "nest"
- Inexpensive construction
- Materials must be resistant to the process chemicals

FIGURE 18.2

Common tower packings: (a) Raschig rings; (b) metal Pall ring; (c) plastic Pall ring; (d) Berl saddle; (e) ceramic Intalox saddle; (f) plastic Super Intalox saddle; (g) metal Intalox saddle.

Characteristics of Packing

- Bulk density used for mechanical design of tower
- F_p is used in calculations for ΔP and flooding
- f_p is used in estimating H_x and H_y

ABLE 18.1 Characteristics of dumped tower packings ^{12,156,27}							
Гуре	Material	Nominal size, in.	Bulk density, ⁺ lb/ft ³	Total area,† ft²/ft³	Porosity E		
aschig rings	Ceramic	1	55	112	0.64		
		1	42	58	0.74		
		11	43	37	0.73		
		2	41	28	0.74		
Pall rings	Metal	1	30	63	0.94		
	1.0.000	11	24	39	0.95		
		2	22	31	0.96		
	Plastic	1	5.5	63	0.90		
		11	4.8	39	0.91		
Berl saddles	Ceramic	1	54	142	0.62		
		12	45	76	0.68		
		11	40	46	0.71		
		-					

	Plastic	1	5.5	63	0.90	55	1.36
		11/2	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	Ĩ	54	142	0.62	240	1.58
		1	45	76	0.68	110	1.36§
		115	40	46	0.71	65	1.07
Intalox saddles	Ceramic	Ĩ.	46	190	0.71	200	2.27
		1	42	78	0.73	92	1.54
		11	39	59	0.76	52	1.18
		2	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64
Super Intalox	Ceramic	1	-			60	1.54
saddles		2 •			—	30	1.0
IMTP	Metal	1	_		0.97	41	1.74
		11			0.98	24	1.37
		2		-	0.98	18	1.19
Hy-Pak	Metal	1	19	54	0.96	45	1.54
		11			—	29	1.36
		2	14	29	0.97	26	1.09
Tri-Pac	Plastic	1	6.2	85	0.90	28	-
		2	4.2	48	0.93	16	

'Bulk density and total area are given per unit volume of column.

⁴Factor F_p is a pressure drop factor and f_p a relative mass-transfer coefficient. Factor f_p is discussed on page 603 in the paragraph "Performance of Other Packings." Its use is illustrated in Example 18.7.

Based on NH3-H2O data; other factors based on CO2-NaOH data

4

Packing

factors

580

155

95

65

56

40 27

J.

1.528

1.36§

1.0

0.928

1.54 1.36

1.09

Pressure Drop

- Simplified chart to predict when liquid hold up will begin
- Chart is specific to a particular size and design of packing
- Used to determine Loading
 - Loading refers to when the amount of liquid held up on the packing begins to increase
- Loading begins where the slop of the curve changes
 - Not easily determined with precision

FIGURE 18.4

5

Flooding

- Flooding refers to when the liquid hold up is so much that the void space in the packing all fills with liquid
- Flooding is **BAD**
 - Liquid becomes continuous and you have low surface area and therefore low mass transfer
- Operating somewhat near flooding conditions is actually good
 - Fully wet the packing and therefore maximize surface area available for mass transfer
- Typical flooding graph is shown
 - It is specific to a particular size and design of packing
 - Calculate the mass velocity of the liquid
 - Use appropriate curve to determine predicted mass velocity of vapor that will lead to flooding

FIGURE 18.5

Flooding velocities in ceramic Intalox saddles, air-water system. (1,000 lb/ft² · h = $1.356 \text{ kg/m}^2 \cdot \text{s}$)

Pressure Drop

- Generalized Correlation for Pressure Drop
- x axis

$$\frac{G_x}{G_y} \sqrt{\frac{\rho_y}{\rho_x - \rho_y}}$$

• y axis

$$\frac{G_y^2 F_p \mu_x^{0.1}}{g_c(\rho_x - \rho_y)\rho_y}$$

- Calculate the value for x axis
- Go to the curve that corresponds to the pressure drop that you are trying to target
- Read off the value of the y axis
- Calculate the value for G_{γ}

FIGURE 18.6

Generalized correlation for pressure drop in packed columns. (1 in. $H_3O/ft = 817 \text{ Pa/m}$) (After Eckert.³)

Alternate Pressure Drop Correlation

• x axis

$$\frac{G_x}{G_y} \sqrt{\frac{\rho_y}{\rho_x}}$$

• y axis

$$C_s F_p^{0.5} v^{0.05}$$

•
$$C_s = u_0 \sqrt{\frac{\rho_y}{\rho_x - \rho_y}}$$

- Where u_0 is the superficial velocity
 - Volumetric flow rate divided by cross-sectional area of the tower, $S = \frac{\pi D^2}{4}$
 - Area ignores fact that packing takes up some of the space

FIGURE 18.7

Alternate generalized pressure drop correlation. (1 in. $H_2O/ft = 817 \text{ Pa/m}$)

Empirical Flooding Relationship

• Gives us an allowable pressure drop to use for predicting flooding

$$10 < F_p < 60$$
 $\Delta P_{flood} = 0.115 F_p^{0.7}$ inches H_2O/ft

$$F_p > 60$$
 $\Delta P_{flood} = 2.0 inches H_2O/ft$

 \cap

- A tower packed with 1" ceramic Intalox saddles is to be built to treat 25,000 ft³ of entering gas per hour.
- The ammonia content of the entering gas is 2% by volume. Ammonia-free water is used as absorbent.
- The temperature of the entering gas and the water is 68 F (= 528 R) and the pressure is 1 atmosphere.
- The ratio of liquid flow to gas flow is 1.25 lb of liquid per lb of gas.
- If the design pressure drop is 0.5 in H2O per foot of packing, what should be the mass velocity of the gas and the diameter of the tower?

• Use Figure 18.7

 \cap

FABLE 18.1			
Characteristics	of dumped	tower	packings12,150,27

		Nominal size, in.	Bulk density,† lb/ft³	Total area,† ft²/ft³	Porosity E	Packing factors [†]		
Туре	Material					F_p	ſ,	
Raschig rings	Ceramic	1	55	112	0.64	580	1.528	
		1	42	58	0.74	155	1.36§	
		14	43	37	0.73	95	1.0	
		2	41	28	0.74	65	0.928	
Pall rings	Metal	1	30	63	0.94	56	1.54	
		11	24	39	0.95	40	1.36	
		2	22	31	0.96	27	1.09	
	Plastic	1	5.5	63	0.90	55	1.36	
		11	4.8	39	0.91	40	1.18	
Berl saddles	Ceramic	Ĩ	54	142	0.62	240	1.585	
		1	45	76	0.68	110	1.36§	
		14	40	46	0.71	65	1.07§	
Intalox saddles	Ceramic	1	46	190	0.71	410	2.27	
and an		1	42	78	0.73	92	1.54	
		11	39	59	0.76	52	1.18	
		2	38	36	0.76	40	1.0	

0

-0

- Use Figure 18.7
- $\rho_x = 62.3 \ \frac{lb_m}{ft^3}$, the density of water
- ρ_y
 - Average Molecular weight is:
 0.98 * 28.96 + 0.02 * 17.03 = 28.72
 - Note that percent by volume is the same as molar percent

•
$$\frac{n}{V} = \frac{P}{RT} = \frac{1 \ atm}{0.73024 \ \frac{ft^3 \ atm}{\circ R \ lb - mol} * 528 \ R}} = 0.00259 \ \frac{lb - mol}{ft^3}$$

 $\rho_y = MW \ * \frac{n}{V} = 28.72 \ \frac{lb_m}{lb - mol} \ * 0.00259 \ \frac{lb - mol}{ft^3} = 0.0745 \ \frac{lb_m}{ft^3}$

•
$$\frac{G_x}{G_y}\sqrt{\frac{\rho_y}{\rho_x}} = 1.25\sqrt{\frac{0.0745}{62.3}} = 0.0432$$

• For $\Delta P = 0.5'' wc$: $C_S F_p^{0.5} v^{0.05} = 1.38$

FIGURE 18.7

Alternate generalized pressure drop correlation. (1 in. H₂O/ft = 817 Pa/m)

- $C_S F_p^{0.5} v^{0.05} = 1.38$
- $F_p^{0.5} = \sqrt{92} = 9.59$
- $\nu^{0.5} = 1^{0.05} = 1$ (kinematic viscosity of water = 1 cS)
- $C_S = \frac{1.38}{9.59 \times 1} = 0.144$

•
$$C_s = u_0 \sqrt{\frac{\rho_y}{\rho_x - \rho_y}}$$
 can be rearranged to $u_0 = C_s \sqrt{\frac{\rho_x - \rho_y}{\rho_y}}$

•
$$u_0 = 0.144 \sqrt{\frac{62.3 - 0.0745}{0.0745}} = 4.16 \frac{ft}{s}$$

•
$$G_y = u_0 * \rho_y = 4.16 \frac{ft}{s} * 0.0745 \frac{lb_m}{ft^3} * \frac{3600 s}{hr} = 1116 \frac{lb_m}{ft^2 hr}$$

•
$$G_{\chi} = 1.25 * G_{y} = 1.25 * 1116 \frac{lb_{m}}{ft^{2} hr} = 1395 \frac{lb_{m}}{ft^{2} hr}$$

TABLE 18.1				
Characteristics o	f dumped	tower	packings ^{12,158,27}	

	Material	Nominal size, in.	Bulk density,† lb/ft³	Total area,† ft²/ft³	Porosity E	Packing factors [†]	
Туре						F_p	ſ,
Raschig rings	Ceramic	1	55	112	0.64	580	1.528
turit ing		1	42	58	0.74	155	1.36§
		14	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.92§
Pall rings	Metal	1	30	63	0.94	56	1.54
	100000000	11	24	39	0.95	40	1.36
		2	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
	1.000100	11	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	Ĩ.	54	142	0.62	240	1.58§
		1	45	76	0.68	110	1.36§
		14	40	46	0.71	65	1.07§
Intalox saddles	Ceramic	1	46	190	0.71	200	2.27
		1	42	78	0.73	92	1.54
		11	39	59	0.76	52	1.18
		2	38	36	0.76	40	1.0

- $G_y = 1116 \frac{lb_m}{ft^2 hr}$
- $G_x = 1395 \frac{lb_m}{ft^2 hr}$
- total gas mass flow = Volumetric Flow * $\rho_y = 25,000 \frac{ft^3}{hr} * 0.0745 \frac{lb_m}{ft^3} = 1863 \frac{lb_m}{hr}$

•
$$G_y * Area = total gas mass flow$$
 $Area = \frac{total mass flow}{G_y}$

• Area =
$$S = \frac{1863 \frac{lb_m}{hr}}{1116 \frac{lb_m}{ft^2 hr}} = 1.67 ft^2$$

• $D = \left(\frac{4 * S}{\pi}\right)^2 = \left(\frac{4 * 1.67 ft^2}{\pi}\right)^2 = 1.46 ft$

