CE407 SEPARATIONS

Lecture 22

Instructor: Miao Yu

\author{

- University at Buffalo
 Department of Chemical
 and Biological Engineering
 School of Engineering and Applied Sciences
}

玉 $\mathbf{5}$ Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Mass Transfer Correlations for Packed Towers

- In the previous lecture we saw some methods for estimating $\boldsymbol{k}_{\boldsymbol{x}}$ and $\boldsymbol{k}_{\boldsymbol{y}}$
- When it comes to packed towers there are some issues
- The geometry of the packing is not like the simpler cases where we have existing correlations
- \boldsymbol{a} is dependent on the flow rates, packing design, surface tension, viscosity, etc.
- Fortunately, there are correlations for \boldsymbol{H}_{x} and \boldsymbol{H}_{y} directly

- This was arrived at by taking experimental data for O_{2} in water
- This system is dominated by liquid film resistance, so the experimental measurements are essentially that of transport through the liquid film versus the combination
- $\boldsymbol{G}_{\boldsymbol{x}}$ is mass velocity and must be the same units as appear in the correlation, ${ }^{\boldsymbol{l b} / \boldsymbol{f} \boldsymbol{t}^{2} \boldsymbol{h r}}$
- Data correlated to show that $\boldsymbol{H}_{x} \propto\left(\frac{G_{x}}{\mu}\right)^{0.3}\left(S_{c}\right)^{0.5}$
- A value of 0.9 feet corresponds to $\boldsymbol{G}_{\boldsymbol{x}}=1500{ }^{l b} /_{f t^{2} h r}, \boldsymbol{\mu}=0.891 c P, S_{c}=381$, and $\boldsymbol{f}_{\boldsymbol{p}}=1$

E五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

Mass Transfer Correlations for Packed Towers

- The correlation on the previous page was developed using water as the liquid - use caution when applying it to other liquids

TABLE 18.1
Characteristics of dumped tower packings ${ }^{12,155,27}$

- \boldsymbol{f}_{p} accounts for the type of packing used
- Be sure to use $\boldsymbol{f}_{\boldsymbol{p}}$ and not $\boldsymbol{F}_{\boldsymbol{p}}$
- $\boldsymbol{F}_{\boldsymbol{p}}$ is used in calculations of pressure drop

Type	Material	Nominal size, in.	$\begin{gathered} \text { Bulk } \\ \text { density, } \mathrm{lb} / \mathrm{ft}^{3} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { area, } \mathrm{ft}^{2} / \mathrm{ft}^{3} \end{gathered}$	Porosity ε	Packing factors ${ }^{7}$	
						F_{p}	f_{p}
Raschig rings	Ceramic	$\frac{1}{2}$	55	112	0.64	580	1.528
		1	42	58	0.74	155	1.368
		$1 \frac{1}{2}$	43	37	0.73	95	1.0
		2^{2}	41	28	0.74	65	0.928
Pall rings	Metal	1	30	63	0.94	56	1.54
		$1 \frac{1}{2}$	24	39	0.95	40	1.36
		2^{2}	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1 \frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	$\frac{1}{2}$	54	142	0.62	240	1.588
		1^{2}	45	76	0.68	110	1.368
		$1 \frac{1}{2}$	40	46	0.71	65	1.078
Intalox saddles	Ceramic	$\frac{1}{2}$	46	190	0.71	200	2.27
		1^{2}	42	78	0.73	92	1.54
		$1 \frac{1}{2}$		59	0.76	52	1.18
		2	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64
Super Intalox saddles	Ceramic	1	-	-	-	60	1.54
		2	-	-	-	30	1.0
IMTP	Metal	1 .	-	-	0.97	41	1.74
		$1 \frac{1}{2}$	-	-	0.98	24	1.37
		2	-	-	0.98	18	1.19
Hy-Pak	Metal	1	19	54	0.96	45	1.54
		$1 \frac{1}{2}$	-	-	-	29	1.36
		2^{2}	14	29	0.97	26	1.09
Tri-Pac	Plastic	1	6.2	85	0.90	28	-
		2	4.2	48	0.93	16	-

${ }^{+}$Bulk density and total area are given per unit volume of column.
${ }^{4}$ Factor F_{p} is a pressure drop factor and f_{n} a relative mass-transfer coefficient. Factor f_{p} is discussed on page 603 in the paragraph "Performance of Other Packings." Its use is illustrated in Example 18.7.

Mass Transfer Correlations for Packed Towers

$H_{y}=(1.4 f t)\left[\frac{G_{y}}{500 l b} / f t^{2} h r\right]^{0.3}\left[\frac{1500 l b / f t^{2} h r}{G_{x}}\right]^{0.4}\left(\frac{S_{c}}{0.66}\right)^{0.5} \frac{1}{f_{p}}$

- Correlation similarly derived for an air-ammonia-water system
- High solubility of ammonia in water leads to system being dominated by gas film resistance
- \boldsymbol{G}_{x} and \boldsymbol{G}_{y} are mass velocities and must be in the same units as appear in the correlation, ${ }^{l b} / f t^{2} h r$
- Notice that $\boldsymbol{G}_{\boldsymbol{y}}$ appears in the $\boldsymbol{H}_{\boldsymbol{y}}$ correlation but not in the $\boldsymbol{H}_{\boldsymbol{x}}$ correlation
- This is because gas flow rates are specified to avoid flooding in the tower and therefore are usually in a set range for a given liquid flow

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Mass Transfer Correlations for Packed Towers

－Use arithmetic averages of mass velocities at the top and bottom of the tower

$$
\begin{aligned}
& \boldsymbol{G}_{x}=\frac{\left(G_{x}\right)_{a}+\left(G_{x}\right)_{b}}{2} \\
& \boldsymbol{G}_{y}=\frac{\left(\boldsymbol{G}_{y}\right)_{a}+\left(G_{y}\right)_{b}}{2}
\end{aligned}
$$

玉 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Overall Mass Transfer Coefficients

Overall Heights of Transfer Units:

$$
\begin{aligned}
& H_{O y}=H_{y}+\frac{m}{L / V} H_{x} \\
& H_{O x}=H_{x}+\frac{L / V}{m} H_{y}
\end{aligned}
$$

- $y_{i}=m x_{i}$
- L and V are molar flow rates

世画 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Packed Tower HTU Example - problem statement

- $720 \mathrm{~mol} / \mathrm{hr}$ stream of toluene contaminated oil (95 mole percent oil, 5 mole percent toluene) is to be cleaned by countercurrent contact with air in a stripping tower operating at 25 C and atmospheric temperature.
- Tower is packed with 1" plastic Pall rings
- Exiting liquid must have a toluene mole fraction equal to no more than 0.001
- Entering air is pure and is at 1.078 times the minimum.
- The tower diameter is 17 "
- Under the proposed operating conditions $H_{x}=1.0 \mathrm{ft}$
- Toluene will follow Raoult's Law and has a vapor pressure of 0.0380 atm
- The oil has MW $=170, \rho=0.730 \frac{\mathrm{gm}}{\mathrm{cm}^{3}}, \mu=0.86 c P$
- Due to low toluene mole fractions the physical properties may be approximated as those of pure oil
- Using $\boldsymbol{H}_{\boldsymbol{O y}}$ and $\boldsymbol{N}_{\boldsymbol{O y}}$, determine the required Packed Height
- Use the "Usual Assumptions"

University at Buffalo

5 $\mathbf{5}$ Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

$$
\begin{aligned}
& H_{y}=(1.4 f t)\left[\frac{G_{y}}{500 l b / f t^{2} h r}\right]^{0.3}\left[\frac{1500 l b / f t^{2} h r}{G_{x}}\right]^{0.4}\left(\frac{S_{c}}{0.66}\right)^{0.5} \frac{1}{f_{p}} \\
& H_{o y}=H_{y}+\frac{m}{L / V} H_{x} \\
& N_{O y}=\frac{y_{b}-y_{a}}{\overline{\left(y-y^{*}\right)_{l m}}} \quad \overline{\left(y-y^{*}\right)_{l m}}=\frac{\left(y-y^{*}\right)_{a}-\left(y-y^{*}\right)_{b}}{\ln \left[\frac{\left(y-y^{*}\right)_{a}}{\left(y-y^{*}\right)_{b}}\right]} \\
& Z_{t}=H_{O y} * N_{O y}
\end{aligned}
$$

お Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences
Packed Tower HTU Example－Preliminary calculations
－ 1 hour basis

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences
Packed Tower HTU Example－minimum and actual air flow
－Due to the dilute nature and the fact that this is a stripping operation，minimum air can be calculated with the assumption that
－Actual Air Flow

世衁 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences
Packed Tower HTU Example－Mass rates and Mass Fluxes

APPENDIX 18 Diffusivities and Schmidt Numbers of

 Gases in Air（ $25^{\circ} \mathrm{C}$ and 1 atm ）| Cav | Valumetric diffasivity $D_{\text {．．}}$ （12 $\mathrm{m}^{\mathrm{I}} / \mathrm{h}$ | $N_{s e}=\frac{w}{\omega D_{4}}$ |
| :---: | :---: | :---: |
| Avetie ack | Q4， 13 | 126 |
| Avatone | 0.323 | 1.609 |
| Ammenta | 6836 | Q61 |
| Brnacre | 0.299 | 1.72 |
| N－Butyl alselhel | c．273 | 1．58 |
| Carben dioxide | $\text { e. } 535$ | ass |
| Cutees tetrachioriaie | 01265 | 1.97 |
| Chlonise | 1.435 | 1.19 |
| Chlocobenarace | a 24 | 213 |
| Entane | 3．39 | 184 |
| Ethyl acmate | a．27s | 18.4 |
| Elityl aluebol | a．36 | |
| Eilhyl ether | a302 | 1.70 |
| Hyelrotect | 2.37 | az2 |
| Methane | | 6紷 |
| Metiol alcoluel | 0.315 | 1.00 |
| Naparhalens | 0199 | 2.57 |
| Nitrogen | － 7 7as | 0.73 |
| 4．CNTans | 8198 | 2.62 |
| Oxyzen | 0090 | 0.74 |
| Phespent | 0.315 | 145 |
| Propanat | 0.364 | 1.42 |
| Sufler dionide | 014．45 | 142 |
| Toluarte | 0275 | 1.86 |
| Water wapowt | 0493 | （150 |

- ${ }^{\text {University at Buffalo }}$

五 Department of Chemical
and Biological Engineering
School of Engineering and Applied Sciences
TABLE 18.1
Characteristics of dumped tower packings ${ }^{12150.27}$

Type	Material	Nominal size, in.	$\begin{gathered} \text { Bulk } \\ \text { density, } \mathrm{lb} / \mathrm{ft}^{3} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { area, }{ }^{[} \mathrm{ft}^{2} / \mathrm{mt}^{3} \end{gathered}$	Porosity	Packing factors ${ }^{\text { }}$	
						F_{p}	f_{p}
Raschig rings	Ceramic	$\frac{1}{2}$	55	112	0.64	580	1.528
		$1{ }^{2}$	42	58	0.74	155	1.368
		$1 \frac{1}{2}$	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.928
Pall rings	Metal	1	30	63	0.94	56	1.54
		$1 \frac{1}{2}$	24	39	0.95	40	1.36
		2	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1 \frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	$\frac{1}{2}$	54	142	0.62	240	1.588
		1^{2}	45	76	0.68	110	1.368
		1 $\frac{1}{2}$	40	46	0.71	65	1.078
Intalox saddles	Ceramic	$\frac{1}{2}$	46	190	0.71	200	2.27
		1	42	78	0.73	92	1.54
		$1 \frac{1}{2}$	39	59	0.76	52	1.18
		2^{2}	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64
Super Intalox saddles	Ceramic	1	-	-	-	60	1.54
		2	-	-	-	30	1.0
IMTP	Metal		-	-	0.97	41	1.74
		$1 \frac{1}{2}$	-	-	0.98	24	1.37
		2	-	-	0.98	18	1.19
Hy-Pak	Metal	1	19	54	0.96	45	1.54
		$1 \frac{1}{2}$	-	-	-	29	1.36
		2	14	29	0.97	26	1.09
Tri-Pac	Plastic	1	6.2	85	0.90	28	-
		2	4.2	48	0.93	16	-

'Bulk density and total area are given per unit volume of column.
'Factor F, is a pressure drop factor and $f_{\text {, a }}$ a relative mass-transfer coefficient. Factor f, is discussed on page 603 in the paragraph "Performance of Other Packings." Its use is tlustrated in Example 18.7.
'Based on $\mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$ data; other factors based on $\mathrm{CO}_{2}-\mathrm{NaOH}$ data.

世五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

Mass Transfer Coefficients

$$
\begin{aligned}
& H_{y}=(1.4 f t)\left[\frac{G_{y}}{500 l b / f t^{2} h r}\right]^{0.3}\left[\frac{1500 l b / f t^{2} h r}{G_{x}}\right]^{0.4}\left(\frac{S_{c}}{0.66}\right)^{0.5} \frac{1}{f_{p}} \\
& H_{y}=(1.4 f t)\left[\frac{809 \frac{l b_{m}}{f t^{2} h r}}{500 \boldsymbol{l b} / \boldsymbol{f} t^{2} \boldsymbol{h r}}\right]^{0.3}\left[\frac{1500 \boldsymbol{l b} / \boldsymbol{f t}^{2} \boldsymbol{h r}}{165 \frac{l b_{m}}{f t^{2} h r}}\right]^{0.4}\left(\frac{1.86}{\mathbf{0 . 6 6}}\right) \quad \frac{1}{1.36}=4.8 \mathrm{ft} \\
& \boldsymbol{H}_{\boldsymbol{x}}=1.0 \mathrm{ft} \quad \text { given in problem statement }
\end{aligned}
$$

世衁 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Overall Mass Transfer Coefficient

Overall Height of Transfer Unit

$$
\boldsymbol{H}_{O y}=\boldsymbol{H}_{y}+\frac{m}{L / V} \boldsymbol{H}_{x} \quad \text { where } \quad y_{i}=m \boldsymbol{x}_{\boldsymbol{i}}
$$

玉 $\mathbf{5}$ Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

Number of Transfer Units

$$
\begin{gathered}
N_{o y}=\frac{y_{b}-y_{a}}{\left(y-y^{*}\right)_{l m}} \\
{\overline{\left(y-y^{*}\right)_{l m}}}^{\left(\underline { y } \left[\frac{\left.y^{*}\right)_{a}-\left(y-y^{*}\right)_{b}}{\ln \left[\frac{\left.y-y^{*}\right)_{a}}{\left(y-y^{*}\right)_{b}}\right]}\right.\right.}
\end{gathered}
$$

世衁 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Number of Transfer Units and Packed Height

$$
{\overline{\left(y-y^{*}\right)_{l m}}}_{l m}=\frac{\left(y-y^{*}\right)_{a}-\left(y-y^{*}\right)_{b}}{\ln \left[\frac{\left(y-y^{*}\right)_{a}}{\left(y-y^{*}\right)_{b}}\right]}
$$

University at Buffalo

G五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Packed Tower HTU Example - Preliminary calculations

- 1 hour basis

$\begin{aligned} & L_{\mathrm{a}}=720 \mathrm{~mol} \\ & x_{\mathrm{a}}=0.05 \\ & \mathrm{~L}_{\mathrm{c}}=0.95 * 720=684 \text { mol oil } \end{aligned}$		$\begin{aligned} & V_{c}=\text { same } \\ & \left(V_{\text {tol }}\right)_{a}=36-0.685=35.315 \mathrm{~mol} \\ & \mathrm{y}_{\mathrm{a}}=? \end{aligned}$
$\left(L_{\text {tol }}\right)_{\mathrm{a}}=0.05$ * $720=36 \mathrm{~mol} \mathrm{tol}$		
	b	
$\begin{aligned} & L_{c}=684 \text { mol oil } \\ & x_{b}=0.001 \end{aligned}$		$\begin{gathered} V_{b}=V_{c}=? \\ y_{b}=0 \end{gathered}$

- $x_{b}=0.001=\frac{\left(L_{\text {tol }}\right)_{b}}{\left(L_{\text {tol }}\right)_{b}+684} \rightarrow\left(L_{\text {tol }}\right)_{b}=0.685 \mathrm{~mol}$

世五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Packed Tower HTU Example - minimum and actual air flow

- Due to the dilute nature and the fact that this is a stripping operation, minimum air can be calculated with the assumption that

$$
\begin{gathered}
\left(y_{a}\right)_{\min }=y^{*}\left(x_{a}\right)=\frac{P_{\text {tol }}^{\text {sat }}}{P} x_{a} \\
\left(y_{a}\right)_{\min }=y^{*}\left(x_{a}\right)=\frac{0.038 \mathrm{~atm}}{1 \mathrm{~atm}} 0.05=0.0019
\end{gathered}
$$

$$
\left(y_{a}\right)_{\min }=0.0019=\frac{\left(V_{\text {tol }}\right)_{a}}{\left(V_{\text {tol }}\right)_{a}+\left(V_{c}\right)_{\min }}=\frac{35.315}{35.315+\left(V_{c}\right)_{\min }} \rightarrow\left(V_{c}\right)_{\min }=18551.527 \mathrm{~mol}
$$

- Actual Air Flow

$$
\begin{gathered}
V_{c}=1.078 *\left(V_{c}\right)_{\min }=19998.546 \mathrm{~mol} \approx 20000 \mathrm{~mol} \\
y_{a}=\frac{\left(V_{t o l}\right)_{a}}{\left(V_{\text {tol }}\right)_{a}+V_{c}}=\frac{35.315}{35.315+20,000}=0.001763
\end{gathered}
$$

世五 Department of Chemical
and Biological Engineering
School of Engineering and Applied Sciences

Packed Tower HTU Example -Mass rates and Mass Fluxes

- $\left(S G_{x}\right)_{a}=\left[\left(684 \frac{\mathrm{moloil}}{\mathrm{hr}}\right) *\left(170 \frac{\mathrm{~g}}{\text { mol oil }}\right)+\left(36 \frac{\mathrm{~mol} \mathrm{tol}}{\mathrm{hr}}\right) *\left(92.14 \frac{\mathrm{~g}}{\mathrm{~mol} \mathrm{tol}}\right)\right] * \frac{1 \mathrm{lb}_{\mathrm{m}}}{453.6 \mathrm{~g}}=263.7 \frac{\mathrm{lb} \frac{\mathrm{m}}{\mathrm{hr}}}{\mathrm{hr}}$
- $\left(S G_{y}\right)_{a}=\left[\left(20,000 \frac{\mathrm{~mol} \mathrm{air}}{\mathrm{hr}}\right) *\left(28.84 \frac{\mathrm{~g}}{\mathrm{~mol} \mathrm{air}}\right)+\left(35.315 \frac{\mathrm{~mol} \mathrm{tol}}{\mathrm{hr}}\right) *\left(92.14 \frac{\mathrm{~g}}{\mathrm{~mol} \mathrm{tol}}\right)\right] * \frac{1 \mathrm{lb} \mathrm{b}_{\mathrm{m}}}{453.6 \mathrm{~g}}=1279 \frac{\mathrm{lb} \mathrm{b}_{\mathrm{m}}}{\mathrm{hr}}$
- $\left(S G_{x}\right)_{b}=\left[\left(684 \frac{\mathrm{moloil}}{\mathrm{hr}}\right) *\left(170 \frac{\mathrm{~g}}{\mathrm{~mol} \mathrm{oil}}\right)+\left(0.685 \frac{\mathrm{~mol} \mathrm{tol}}{\mathrm{hr}}\right) *\left(92.14 \frac{\mathrm{~g}}{\mathrm{~mol} \mathrm{tol}}\right)\right] * \frac{1 \mathrm{lb}_{\mathrm{m}}}{453.6 \mathrm{~g}}=256.5 \frac{\mathrm{lb} \frac{\mathrm{m}}{}}{\mathrm{hr}}$
- $\left(S G_{y}\right)_{b}=\left[\left(20,000 \frac{\text { mol air }}{h r}\right) *\left(28.84 \frac{g}{\text { mol air }}\right)\right] * \frac{1 l b_{m}}{453.6 \mathrm{~g}}=1272 \frac{\mathrm{lb} \frac{\mathrm{b}}{\mathrm{hr}}}{\mathrm{hr}}$
- $\overline{\left(S G_{x}\right)}=$ arithmetic mean of liquid flow at a and $\mathrm{b}=260.1 \frac{l b_{m}}{h r}$
- $\overline{\left(S G_{y}\right)}=$ arithmetic mean of vapor flow at a and $\mathrm{b}=1275.5 \frac{l b_{m}}{h r}$
- $\quad S=$ Superficial Cross-sectional area $=\frac{\pi D^{2}}{4}=\frac{\pi(17 / 12)^{2}}{4}=1.576 \mathrm{ft}^{2}$
- $\overline{G_{x}}=\frac{\overline{\left(S G_{x}\right)}}{S}=\frac{260.1 \frac{l b_{m}}{h r}}{1.576 f t^{2}}=165 \frac{l b_{m}}{f t^{2} h r}$

Liquid Mass Flux

- $\overline{G_{y}}=\frac{\overline{\left(S G_{y}\right)}}{S}=\frac{1275.5 \frac{l b_{m}}{h r}}{1.576 f t^{2}}=809 \frac{l b_{m}}{f t^{2} h r}$

Vapor Mass Flux

University at Buffalo
Department of Chemical
and Biological Engineering
School of Engineering and Applied Sciences

APPENDIX 18

DIFFUSIViTiES
AND SCHMIDT NUMBERS FOR GASES
IN AIR AT $25^{\circ} \mathrm{C}$ AND
1 ATM

Cas	Valumetric eifasivity $D_{\text {. }}$ tr $\mathrm{r}^{\mathrm{t}} / \mathrm{h}$	$\mathrm{V}_{\mathrm{s}}=\frac{N}{\omega D_{*}}$
Acetie ackd	Q413	1.26
Ansluge	Q33	1.60
Ammenta	esis	061
Binasee	0.299	L.7
N-Buryl alseliel	C.273	L.85
Curbers diaxide	6.535	CS\%
Cartos teunaclionide	10268	1.97
Chlonice	14.45	1.19
Calocetename	a2+	213
Erame	an\%	104
Emyl amate	a 278	184
Elityl alweol	a360	1.30
Eihyl ether	0302	1.20
Hydroge	2.97	a22
Methane	0.745	069
Methy alcoliel	0.515	$1 / 00$
Sapathalene	0199	257
Nitrogen	0705	0.73
4.Octant	0196	262
Oxyezs	$06 * 0$	0.74
Phosyma	0318	185
Prapane	a3M	142
Sulfar divide	0.445	
Tolume	0275	185
Waler vapor	0695	

TABLE 18.1
Characteristics of dumped tower packings ${ }^{12150.27}$

Type *	Material	Nominal size, in.	$\begin{gathered} \text { Bulk } \\ \text { density, } \mathrm{lb} / \mathrm{ft}^{3} \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { area, } \mathrm{ft}^{2} / \mathrm{ft}^{3} \end{gathered}$	Porosity ε	Packing factors ${ }^{\text { }}$	
						F_{p}	f_{p}
Raschig rings	Ceramic	$\frac{1}{2}$	55	112	0.64	580	1.528
		1	42	58	0.74	155	1.368
		$1 \frac{1}{2}$	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.928
Pall rings	Metal	1	30	63	0.94	56	1.54
		$1 \frac{1}{2}$	24	39	0.95	40	1.36
		2	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1 \frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	$\frac{1}{2}$	54	142	0.62	240	1.588
		$1{ }^{2}$	45	76	0.68	110	1.368
		$1 \frac{1}{2}$	40	46	0.71	65	1.078
Intalox saddles	Ceramic	$\frac{1}{2}$	46	190	0.71	200	2.27
		1	42	78	0.73	92	1.54
		1!	39	59	0.76	52	1.18
		2^{-}	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64
Super Intalox saddles	Ceramic	1	-	-	-	60	1.54
		2	-	-	-	30	1.0
MTP	Menal	1 *	-	-	0.97	41	1.74
		$1 \frac{1}{2}$	-	-	0.98	24	1.37
		2	-	-	0.98	18	1.19
Hy-Pak	Metal	1	19	54	0.96	45	1.54
		112	-	-	-	29	1.36
		2	14	29	0.97	26	1.09
Tri-Pac	Plastic	1	6.2	85	0.90	28	-
		2	4.2	48	0.93	16	-

'Bulk density and total area are given per unit volume of column.
${ }^{\prime}$ Factor F, is a pressure drop factor and f_{f}, a relative mass-transfer coefficient. Factor f, is discussed on page 603 in the paragraph "Performance of Other Packings." lis use is illustrated in Example 18.7.
"Baved on $\mathrm{NH}_{5}-\mathrm{H}_{2} \mathrm{O}$ data; other factors based on $\mathrm{CO}_{2}-\mathrm{NaOH}$ data-

世五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

Mass Transfer Coefficients

$$
\begin{aligned}
& H_{y}=(1.4 f t)\left[\frac{G_{y}}{500 l b / f t^{2} h r}\right]^{0.3}\left[\frac{1500 l b / f t^{2} h r}{G_{x}}\right]^{0.4}\left(\frac{S_{c}}{0.66}\right)^{0.5} \frac{1}{f_{p}} \\
& H_{y}=(1.4 f t)\left[\frac{809 \frac{l b_{m}}{f t^{2} h r}}{500 \boldsymbol{l b} / \boldsymbol{f} t^{2} \boldsymbol{h r}}\right]^{0.3}\left[\frac{1500 \boldsymbol{l b} / \boldsymbol{f t}^{2} \boldsymbol{h r}}{165 \frac{l b_{m}}{f t^{2} h r}}\right]^{0.4}\left(\frac{1.86}{\mathbf{0 . 6 6}}\right) \quad \frac{1}{1.36}=4.8 \mathrm{ft} \\
& \boldsymbol{H}_{\boldsymbol{x}}=1.0 \mathrm{ft} \quad \text { given in problem statement }
\end{aligned}
$$

世臬 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Overall Mass Transfer Coefficient

Overall Height of Transfer Unit

$$
\boldsymbol{H}_{O y}=\boldsymbol{H}_{y}+\frac{m}{L / V} \boldsymbol{H}_{x} \quad \text { where } \quad \boldsymbol{y}_{i}=\boldsymbol{m} \boldsymbol{x}_{\boldsymbol{i}}
$$

- $L / V=\frac{720}{20,035}=0.0359$ at a
- $L / V=\frac{684}{20,000}=0.0342$ at b
- $L / V=0.0351$ average
- $\quad m=0.0384 \quad$ vapor pressure of toluene

$$
H_{O y}=4.8 \mathrm{ft}+\frac{0.0384}{0.0351} * 1.0 \mathrm{ft}=5.9 \mathrm{ft}
$$

世衁 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Number of Transfer Units

$$
\begin{gathered}
N_{o y}=\frac{y_{b}-y_{a}}{\left(y-y^{*}\right)_{l m}} \\
\overline{\left(y-y^{*}\right)_{l m}}=\frac{\left(y-y^{*}\right)_{a}-\left(y-y^{*}\right)_{b}}{\ln \left[\frac{\left(y-y^{*}\right)_{a}}{\left(y-y^{*}\right)_{b}}\right]}
\end{gathered}
$$

- $y_{a}=0.001763$
- $y_{b}=0$
- $y_{a}^{*}=m * x_{a}=0.038 * 0.05=0.0019$
- $y_{b}^{*}=m * x_{b}=0.038 * 0.001=0.000038$
- $y_{a}-y_{a}^{*}=0.001763-0.0019=-0.000137$
- $y_{b}-y_{b}^{*}=0-0.000038=-0.000038$

G画 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Number of Transfer Units and Packed Height

$$
\begin{gathered}
{\overline{\left(y-y^{*}\right)_{l m}}}_{l}=\frac{\left(y-y^{*}\right)_{a}-\left(y-y^{*}\right)_{b}}{\ln \left[\frac{\left(y-y^{*}\right)_{a}}{\left(y-y^{*}\right)_{b}}\right]} \\
{\overline{\left(y-y^{*}\right)_{l m}}}_{l}=\frac{-0.000137-(-0.000038)}{\ln \left[\frac{-0.000137}{-0.000038}\right]}=-7.72 * 10^{-5} \\
N_{O y}=\frac{y_{b}-y_{a}}{\overline{\left(y-y^{*}\right)_{l m}}}=\frac{0-0.001763}{-7.72 * 10^{-5}}=22.84
\end{gathered}
$$

