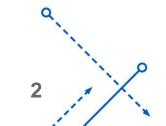
CE407 SEPARATIONS

Lecture 22

Instructor: Miao Yu

Department of Chemical and Biological Engineering School of Engineering and Applied Sciences



Mass Transfer Correlations for Packed Towers

- In the previous lecture we saw some methods for estimating k_x and k_y
- When it comes to packed towers there are some issues
 - The geometry of the packing is not like the simpler cases where we have existing correlations
 - *a* is dependent on the flow rates, packing design, surface tension, viscosity, etc.
- Fortunately, there are correlations for H_x and H_y directly

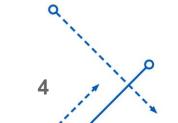
$$H_{x} = (0.9 ft) \left[\frac{G_{x}/\mu}{\left(\frac{1500 \ lb}{ft^{2} \ hr} \right) / (0.891 \ cP)} \right]^{0.3} \left(\frac{S_{c}}{381} \right)^{0.5} \frac{1}{f_{p}}$$

- This was arrived at by taking experimental data for O₂ in water
 - This system is dominated by liquid film resistance, so the experimental measurements are essentially that of transport through the liquid film versus the combination
 - G_x is mass velocity and must be the same units as appear in the correlation, $\frac{lb}{ft^2}$ hr
- Data correlated to show that $H_{\chi} \propto \left(\frac{G_{\chi}}{\mu}\right)^{0.3} (S_c)^{0.5}$
- A value of 0.9 feet corresponds to $G_x = 1500 \frac{lb}{ft^2 hr}$, $\mu = 0.891 cP$, $S_c = 381$, and $f_p = 1$

Mass Transfer Correlations for Packed Towers

- The correlation on the previous page was developed using water as the liquid use caution when applying it to other liquids
- f_p accounts for the type of packing used
 - Be sure to use f_p and not F_p
 - F_p is used in calculations of pressure drop

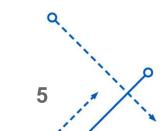
		Nominal	Bulk	Total	Porosity	Packing factors ³	
Туре	Material	size, in.	density, ⁺ lb/ft ³	area, [†] ft ² /ft ³	ε	Fp	f_p
Raschig rings	Ceramic	12	55	112	0.64	580	1.528
		1	42	58	0.74	155	1.36§
		$\frac{1\frac{1}{2}}{2}$	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.928
Pall rings	Metal	1	30	63	0.94	56	1.54
		$1\frac{1}{2}$	24	39	0.95	40	1.36
		$\frac{1\frac{1}{2}}{2}$	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1\frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	1	54	142	0.62	240	1.58
		12	45	76	0.68	110	1.36§
		$1\frac{1}{2}$	40	46	0.71	65	1.07
Intalox saddles	Ceramic	1	46	190	0.71	200	2.27
interest subdres	, i	12	42	78	0.73	92	1.54
		11	39	59	0.76	52	1.18
		2	38	36	0.76	40	1.0
			36	28	0.79	22	0.64
Super Intalox	Ceramic	1	_	_	—	60	1.54
saddles		2	_	_	_	30	1.0
IMTP	Metal	1 *	-	—	0.97	41	1.74
		11	_		0.98	24	1.37
		$\frac{1\frac{1}{2}}{2}$	-		0.98	18	1.19
Hy-Pak	Metal	I	19	54	0.96	45	1.54
1. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		$1\frac{1}{2}$			-	29	1.36
		2	14	29	0.97	26	1.09
Tri-Pac	Plastic	1	6.2	8.5	0.90	28	-
1241 2011 (2012)	0.0000000000000000000000000000000000000	2	4.2	48	0.93	16	-


Bulk density and total area are given per unit volume of column.

^aFactor *F_p* is a pressure drop factor and *f_p* a relative mass-transfer coefficient. Factor *f_p* is discussed on page 603 in the paragraph "Performance of Other Packings." Its use is illustrated in Example 18.7. ^aBased on NH₃-H₃O data; other factors based on CO₂-NaOH data.

Mass Transfer Correlations for Packed Towers $H_{y} = (1.4 ft) \left[\frac{G_{y}}{500 \frac{lb}{ft^{2} hr}} \right]^{0.3} \left[\frac{1500 \frac{lb}{ft^{2} hr}}{G_{x}} \right]^{0.4} \left(\frac{S_{c}}{0.66} \right) \frac{1}{f_{p}}$

- Correlation similarly derived for an air-ammonia-water system
 - High solubility of ammonia in water leads to system being dominated by gas film resistance
- G_x and G_y are mass velocities and must be in the same units as appear in the correlation, ${}^{lb}/_{ft^2 hr}$
- Notice that G_y appears in the H_y correlation but not in the H_x correlation
 - This is because gas flow rates are specified to avoid flooding in the tower and therefore are usually in a set range for a given liquid flow



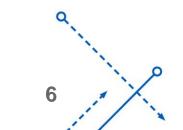
Mass Transfer Correlations for Packed Towers

• Use arithmetic averages of mass velocities at the top and bottom of the tower

$$G_x = \frac{(G_x)_a + (G_x)_b}{2}$$
$$G_y = \frac{(G_y)_a + (G_y)_b}{2}$$

 \cap

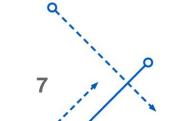
Overall Mass Transfer Coefficients


Overall Heights of Transfer Units:

$$H_{0y} = H_y + \frac{m}{L/V}H_x$$

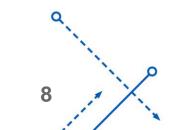
$$H_{Ox} = H_x + \frac{L_V}{m} H_y$$

• $y_i = mx_i$



Packed Tower HTU Example – problem statement

- 720 mol/hr stream of toluene contaminated oil (95 mole percent oil, 5 mole percent toluene) is to be cleaned by countercurrent contact with air in a stripping tower operating at 25 C and atmospheric temperature.
- Tower is packed with 1" plastic Pall rings
- Exiting liquid must have a toluene mole fraction equal to no more than 0.001
- Entering air is pure and is at 1.078 times the minimum.
- The tower diameter is 17"
- Under the proposed operating conditions $H_{\chi} = 1.0 ft$
- Toluene will follow Raoult's Law and has a vapor pressure of 0.0380 atm
- The oil has MW = 170, $\rho = 0.730 \frac{gm}{cm^3}$, $\mu = 0.86 cP$
- Due to low toluene mole fractions the physical properties may be approximated as those of pure oil
- Using H_{0y} and N_{0y} , determine the required Packed Height
 - Use the "Usual Assumptions"

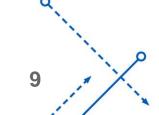


$$H_{y} = (1.4 ft) \left[\frac{G_{y}}{500 \ lb/ft^{2} \ hr} \right]^{0.3} \left[\frac{1500 \ lb/ft^{2} \ hr}{G_{x}} \right]^{0.4} \left(\frac{S_{c}}{0.66} \right)^{0.5} \frac{1}{f_{p}}$$

$$H_{0y} = H_y + \frac{m}{L/V}H_x$$

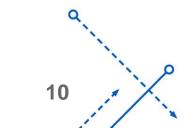
$$N_{Oy} = \frac{y_b - y_a}{(y - y^*)_{lm}} \qquad \overline{(y - y^*)}_{lm} = \frac{(y - y^*)_a - (y - y^*)_b}{\ln\left[\frac{(y - y^*)_a}{(y - y^*)_b}\right]}$$

 $Z_t = H_{Oy} * N_{Oy}$

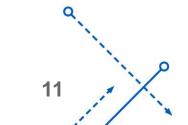


Packed Tower HTU Example – Preliminary calculations

• 1 hour basis

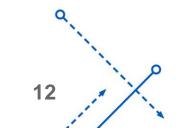

 \cap

Packed Tower HTU Example – minimum and actual air flow


• Due to the dilute nature and the fact that this is a stripping operation, minimum air can be calculated with the assumption that

• Actual Air Flow

Packed Tower HTU Example - Mass rates and Mass Fluxes



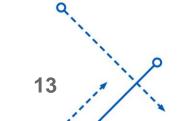
APPENDIX 18

Diffusivities and Schmidt Numbers of Gases in Air (25 °C and 1 atm)

Gas	Volumetric diffusivity D., ft ² /h	$N_{Ne} = \frac{N}{\rho D_{e}}$	
Acetic acid	0.413	1.24	
Austone	0.325	1.60	
Ammonia	0.836	0.61	
Benzene	0.299	1.73	
*-Butyl alcohel	6.273	1.88	
Carbon disoxide	0.535	0.96	
Carbon tetrachloride	0.265	1.97	
Chlorine	11.436	1.19	
Chlorobenzene	0.246	213	
Ethane	01.496	1.04	
Ethyl acetate	0.278	1.84	
Etityl alcohol	0.396	1.30	
Ethyl other	0.302	1.70	
Hydrogen	2.37	0.22	
Methane	0.745	0.69	
Methyl alcohol	0.515	1.00	
Naphthalene	0.199	2.57	
Nitrogen	49 7646	0.73	
s-Octane	0.195	2.62	
Oxygen	0.690	0.74	
Phosgene	0.325	1.65	
Propane	0.365	1.42	
Sulfur disorde	0.445	-115	
Tolurne	0.275	1.85	
Water vapor	0.853	UNC	

* By permission, from T. K. Sherwood and R. L. Pigtord, Absorption and Exercision, 2nd ed., p. 20. Copyright 1932, McGraw-Hill Book Company, New York, 1 The value of any is that for pure air, 0.512 ft²/h. 2 Calculated by Eq. (21.25).

TABLE 18.1


Characteristics of dumped tower packings^{12,156,27}

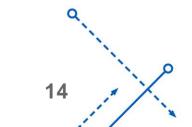
Туре		Nominal	Bulk density, ³ lb/ft ³	Total area, ⁺ ft ² /ft ³	Porosity ε	Packing factors [†]	
	Material	size, in.				F_p	f_{μ}
Raschig rings	Ceramic	100	55	112	0.64	580	1.52§
		1	42	58	0.74	155	1.36§
		11	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.92§
Pall rings	Metal	1	30	63	0.94	56	1.54
r and range.		14	24	39	0.95	40	1.36
		$\frac{1\frac{1}{2}}{2}$	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1\frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	1	54	142	0.62	240	1.58§
Effert distances		1	45	76	0.68	110	1.36§
		11	40	46	0.71	65	1.07§
Intalox saddles	Ceramic	Ĩ.	46	190	0.71	200	2.27
	1	1	42	78	0.73	92	1.54
		11	39	59	0.76	52	1.18
		$\frac{1\frac{1}{2}}{2}$	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64
Super Intalox	Ceramic	1	_			60	1.54
saddles		2	_		_	30	1.0
IMTP	Metal	1 .	-	—	0.97	41	1.74
		11	_		0.98	24	1.37
		$\frac{1\frac{1}{2}}{2}$			0.98	18	1.19
Hy-Pak	Metal	1	19	54	0.96	45	1.54
		$1\frac{1}{2}$	-	—	-	29	1.36
		2	14	29	0.97	26	1.09
Tri-Pac	Plastic	1	6.2	8.5	0.90	28	
1000 C 1000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2	4.2	48	0.93	16	

'Bulk density and total area are given per unit volume of column.

[†]Factor F_p is a pressure drop factor and f_p a relative mass-transfer coefficient. Factor f_p is discussed on page 603 in the paragraph "Performance of Other Packings." Its use is illustrated in Example 18.7.

⁸Based on NH₃-H₂O data; other factors based on CO₂-NaOH data.

-0

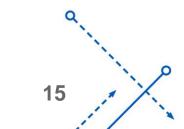


Mass Transfer Coefficients

$$H_{y} = (1.4 ft) \left[\frac{G_{y}}{500 \ lb/ft^{2} \ hr} \right]^{0.3} \left[\frac{1500 \ lb/ft^{2} \ hr}{G_{x}} \right]^{0.4} \left(\frac{S_{c}}{0.66} \right)^{0.5} \frac{1}{f_{p}}$$

$$H_{y} = (1.4 ft) \left[\frac{\frac{809 \frac{lb_{m}}{ft^{2}hr}}{500 \frac{lb}{ft^{2}hr}}}{\frac{160 \frac{lb}{ft^{2}hr}}{165 \frac{lb_{m}}{ft^{2}hr}}} \right]^{0.3} \left[\frac{\frac{1500 \frac{lb}{ft^{2}hr}}{165 \frac{lb_{m}}{ft^{2}hr}}}{\frac{165 \frac{lb_{m}}{ft^{2}hr}}{165 \frac{lb_{m}}{ft^{2}hr}}} \right]^{0.4} \left(\frac{1.86}{0.66} \right)^{0.5} \frac{1}{1.36} = 4.8 ft$$

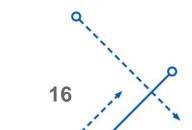
 $H_x = 1.0 ft$ given in problem statement



Overall Mass Transfer Coefficient

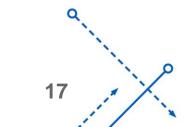
Overall Height of Transfer Unit

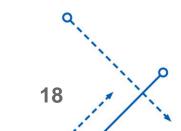
 $H_{0y} = H_y + \frac{m}{L/V}H_x$ where $y_i = mx_i$



Number of Transfer Units

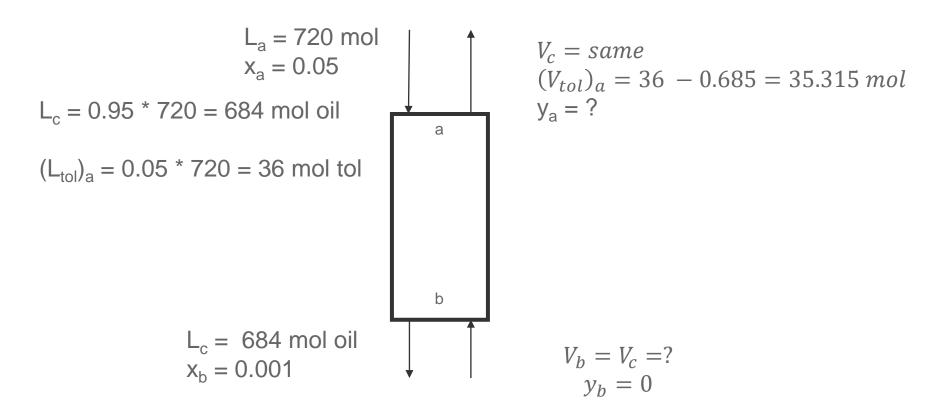
$$N_{Oy} = \frac{y_b - y_a}{(y - y^*)_{lm}}$$


$$\overline{(y-y^*)}_{lm} = \frac{(y-y^*)_a - (y-y^*)_b}{\ln\left[\frac{(y-y^*)_a}{(y-y^*)_b}\right]}$$

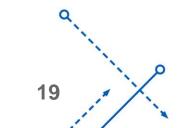


Number of Transfer Units and Packed Height

$$\overline{(y-y^*)}_{lm} = \frac{(y-y^*)_a - (y-y^*)_b}{\ln\left[\frac{(y-y^*)_a}{(y-y^*)_b}\right]}$$



-0



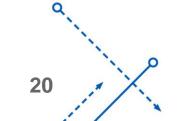
Packed Tower HTU Example – Preliminary calculations

• 1 hour basis

• $x_b = 0.001 = \frac{(L_{tol})_b}{(L_{tol})_b + 684} \to (L_{tol})_b = 0.685 \text{ mol}$

Packed Tower HTU Example – minimum and actual air flow

• Due to the dilute nature and the fact that this is a stripping operation, minimum air can be calculated with the assumption that


$$(y_a)_{min} = y^*(x_a) = \frac{P_{tol}^{sat}}{P} x_a$$

$$(y_a)_{min} = y^*(x_a) = \frac{0.038 atm}{1 atm} \ 0.05 = 0.0019$$

$$(y_a)_{min} = 0.0019 = \frac{(V_{tol})_a}{(V_{tol})_a + (V_c)_{min}} = \frac{35.315}{35.315 + (V_c)_{min}} \to (V_c)_{min} = 18551.527 \text{ mol}$$

• Actual Air Flow $V_c = 1.078 * (V_c)_{min} = 19998.546 mol \approx 20000 mol$

$$y_a = \frac{(V_{tol})_a}{(V_{tol})_a + V_c} = \frac{35.315}{35.315 + 20,000} = 0.001763$$

Packed Tower HTU Example - Mass rates and Mass Fluxes

•
$$(SG_x)_a = \left[\left(684 \ \frac{mol \ oil}{hr} \right) * \left(170 \ \frac{g}{mol \ oil} \right) + \left(36 \frac{mol \ tol}{hr} \right) * \left(92.14 \ \frac{g}{mol \ tol} \right) \right] * \frac{1 \ lb_m}{453.6 \ g} = 263.7 \ \frac{lb_m}{hr}$$

•
$$(SG_y)_a = \left[\left(20,000 \ \frac{mol \ air}{hr} \right) * \left(28.84 \ \frac{g}{mol \ air} \right) + \left(35.315 \ \frac{mol \ tol}{hr} \right) * \left(92.14 \ \frac{g}{mol \ tol} \right) \right] * \frac{1 \ lb_m}{453.6 \ g} = 1279 \ \frac{lb_m}{hr}$$

•
$$(SG_x)_b = \left[\left(684 \ \frac{mol \ oil}{hr} \right) * \left(170 \ \frac{g}{mol \ oil} \right) + \left(0.685 \ \frac{mol \ tol}{hr} \right) * \left(92.14 \ \frac{g}{mol \ tol} \right) \right] * \frac{1 \ lb_m}{453.6 \ g} = 256.5 \ \frac{lb_m}{hr}$$

•
$$(SG_y)_b = \left[\left(20,000 \ \frac{mol \ air}{hr} \right) * \left(28.84 \ \frac{g}{mol \ air} \right) \right] * \frac{1 \ lb_m}{453.6 \ g} = 1272 \ \frac{lb_m}{hr}$$

•
$$\overline{(SG_x)} = arithmetic mean of liquid flow at a and b = 260.1 \frac{lb_m}{hr}$$

•
$$\overline{(SG_y)} = arithmetic mean of vapor flow at a and b = 1275.5 \frac{lb_m}{hr}$$

• S = Superficial Cross-sectional area =
$$\frac{\pi D^2}{4} = \frac{\pi (17/12)^2}{4} = 1.576 ft^2$$

•
$$\overline{G_{\chi}} = \frac{\overline{(SG_{\chi})}}{S} = \frac{260.1\frac{lb_m}{hr}}{1.576\,ft^2} = 165\frac{lb_m}{ft^2hr}$$

Liquid Mass Flux

Vapor Mass Flux

• $\overline{G_y} = \frac{\overline{(SG_y)}}{S} = \frac{1275.5\frac{lb_m}{hr}}{1.576\,ft^2} = 809\frac{lb_m}{ft^2hr}$

APPEN

PENDIX 18		AND S N FO	USIVITIES SCHMIDT NUMBERS DR GASES N AIR AT		
Gas	Volumetric diffusivity D., fe ¹ /h	$N_{N} = \frac{\mu}{\rho D_{\gamma}};$	25°C-AND 1 ATM		
Acetic acid	0.413	1.24			
Acetone	0.325	1.60			
Ammonia	0.836	0.61			
Benzene	0.199	1.73			
s-Butyl alsohol	6.273	1.88			
Carbon diaxide	0.535	0.96			
Carbon tetrachlomie	41.265	1.97			
Chlorine	0.436	1.19			
Chlocobenzene	11.246	213			
Ethane	0.495	1.04			
Ethyl acetate	0.278	1.84			
Etityl alcohol	0.356	1.30			
Ethyl ether	0.302	1.70			
Hydrogen	2.37	0.22			
Methane	0.745	0.69			
Methyl alcohol	0.515	1.00			
Naphthalenz	0.199	2.57			
Nicrogen	0.706	0.73			
n-Octane	0.195	2.62			
Oxygen	0.690	0.74			
Phosgene	0.315	1.65			
Propane	0.369	1.42			
Sulfur dienide	0.445	116			
Toluene	0.275	1.86			
Water vapor	0.853	0.80			

" By permasson, nom T.	K. Sherwood and R. L. Pigiced, Absorption and Extraction	
2nd ed., p. 20. Carpanght	1952, McGraw-Hill Book Company, New York	
2 The value of any is that	for pure air. 0.512 mª/h.	
Cakaland by Eq. (21.25)		

		Nominal	Bulk	Total	Porosity	Packing factors ¹	
Туре	Material	size, in.	density, ³ lb/ft ³	area, ⁺ ft ² /ft ³	E	F_p	f,
Raschig rings	Ceramic	- In	55	112	0.64	580	1.52§
		1	42	58	0.74	155	1.36§
		$1\frac{1}{2}$	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.92§
Pall rings	Metal	1	30	63	0.94	56	1.54
e and e configu		14	24	39	0.95	40	1.36
		$\frac{1\frac{1}{2}}{2}$	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		$1\frac{1}{2}$	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	12	54	142	0.62	240	1.58§
		1	45	76	0.68	110	1.36§
		$1\frac{1}{2}$	40	46	0.71	65	1.07§
Intalox saddles	Ceramic		46	190	0.71	200	2.27
Construction of the second second		12	42	78	0.73	92	1.54
		11	39	59	0.76	52	1.18
		* 2 ²	38	36	0.76	40	1.0
			36	28	0.79	22	0.64
Super Intalox	Ceramic	1	_		—	60	1.54
saddles		2	_		_	30	1.0
IMTP	Metal	1 -	_	_	0.97	41	1.74
		11	_		0.98	24	1.37
		$\frac{1\frac{1}{2}}{2}$			0.98	18	1.19
Hy-Pak	Metal	1	19	54	0.96	45	1.54
	0.011000000	$1\frac{1}{2}$	-	—	-	29	1.36
		2	14	29	0.97	26	1.09
Tri-Pac	Plastic	1	6.2	8.5	0.90	28	-
100 C	1.000	2	4.2	48	0.93	16	

'Bulk density and total area are given per unit volume of column.

Factor F_{} is a pressure drop factor and f₀ a relative mass-transfer coefficient. Factor f₀ is discussed on page 603 in the paragraph "Performance of Other Packings." Its use is illustrated in Example 18.7. *Based on NH3-H2O data; other factors based on CO3-NaOH data.

0

Mass Transfer Coefficients

$$H_{y} = (1.4 ft) \left[\frac{G_{y}}{500 \ lb/ft^{2} \ hr} \right]^{0.3} \left[\frac{1500 \ lb/ft^{2} \ hr}{G_{x}} \right]^{0.4} \left(\frac{S_{c}}{0.66} \right)^{0.5} \frac{1}{f_{p}}$$

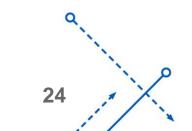
$$H_{y} = (1.4 ft) \left[\frac{\frac{809 \frac{lb_{m}}{ft^{2}hr}}{500 \frac{lb}{ft^{2}hr}}}{\frac{165 \frac{lb_{m}}{ft^{2}hr}}{165 \frac{lb_{m}}{ft^{2}hr}}} \right]^{0.4} \left(\frac{1.86}{0.66} \right)^{0.5} \frac{1}{1.36} = 4.8 ft$$

 $H_x = 1.0 ft$ given in problem statement

Overall Mass Transfer Coefficient

Overall Height of Transfer Unit

 $H_{0y} = H_y + \frac{m}{L/V} H_x$ where $y_i = mx_i$


•
$$L/V = \frac{720}{20,035} = 0.0359$$
 at a

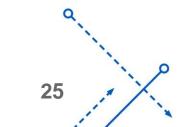
•
$$L/V = \frac{684}{20,000} = 0.0342$$
 at b

• *L*/*V* = 0.0351 average

• m = 0.0384 vapor pressure of toluene

$$H_{0y} = 4.8 ft + \frac{0.0384}{0.0351} * 1.0 ft = 5.9 ft$$

 \cap

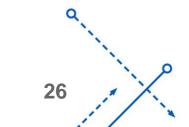


Number of Transfer Units

$$N_{0y} = \frac{y_b - y_a}{(y - y^*)_{lm}}$$

$$\overline{(y-y^*)}_{lm} = \frac{(y-y^*)_a - (y-y^*)_b}{\ln\left[\frac{(y-y^*)_a}{(y-y^*)_b}\right]}$$

- $y_a = 0.001763$
- $y_b = 0$
- $y_a^* = m * x_a = 0.038 * 0.05 = 0.0019$
- $y_b^* = m * x_b = 0.038 * 0.001 = 0.000038$
- $y_a y_a^* = 0.001763 0.0019 = -0.000137$
- $y_b y_b^* = 0 0.000038 = -0.000038$


Number of Transfer Units and Packed Height

$$\overline{(y-y^*)}_{lm} = \frac{(y-y^*)_a - (y-y^*)_b}{\ln\left[\frac{(y-y^*)_a}{(y-y^*)_b}\right]}$$

$$\overline{(y-y^*)}_{lm} = \frac{-0.000137 - (-0.000038)}{\ln\left[\frac{-0.000137}{-0.000038}\right]} = -7.72 * 10^{-5}$$

$$N_{Oy} = \frac{y_b - y_a}{(y - y^*)_{lm}} = \frac{0 - 0.001763}{-7.72 * 10^{-5}} = 22.84$$

•
$$Z_t = H_{0y} * N_{0y} = 5.9 ft * 22.84 = 135 ft$$
 packed height

