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Overall Mass Transfer Coefficients  McSH pp 546-548

* The purpose of using Overall Mass Transfer Coefficients is to avoid the need to
determine the mole fractions at the interface
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* We saw last lecture how to determine the flux if we know the bulk and interfacial
mole fractions in both phases

* We can hope to sample the bulk phases in order to obtain information about the
bulk mole fractions

* Sampling the interface itself would be extremely difficult
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Overall Mass Transfer Coefficients

Start with bulk mole fractions x4 and y4
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y

« This line represents all of the combinations of x4; and y,4; that satisfy the
requirement that the flux is equal in both phases

Intersection of this line with the equilibrium curve determines the pair x4; and y4;

that also satisfy the requirement that the interfacial mole fractions are in

equilibrium with one another: Yai =V (x4;) O

y is the value of y, that would be in equilibrium with x, O

* |.e. the value of y4 on the EQ curve for x = x4

 Thisis NOT the value at the interface

« This is the equilibrium value of vapor mole fraction that is in contact with
a liquid of mole fraction x = x4

Remember, if x4, and y, were in equilibrium there would be no mass transfer!
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Overall Mass Transfer Coefficients

Draw a line from (x4, ¥%) t0 (X45, ¥ a;)

Rise _ Yai—Ya

Slope = =m

Run XAi—XA
Note that: Ya—Ya=a—Ya) + Vai—Ya) 1
From slope we know that: Vai —Ya) =m* (x4, — X4) 2

Remember: Ny = ky(y4 — Yai) = kx(x4; — x4)
* Using dilute approximation that k; ~ k, and k), ~ k,

N N
* c a—ya) = k—j and (xg; —x4) = k—f 3

Substitute [2|and |3|into (1

m can be approximated as the slope of the EQ curve in the region of interest
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Overall Mass Transfer Coefficients

« _ N <1+m>
Ya—Ya A ky k.

1 m\
Ny=[—+— —y"
A <ky+ kx) (Ya—Y2)

Ny =K,(ya—Ya)

° K, IS the Gas Phase Overall Mass Transfer Coefficient o
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Overall Mass Transfer Coefficients
Ny =K,(ya—ya)
new coefficient new driving force

° K, IS the Gas Phase Overall Mass Transfer Coefficient

*  With this expression we can calculate flux with y; and y4 and not have to calculate
interfacial mole fractions

* Thereis NO coefficient or expression to express the flux in terms of x, and y,4 X

i
+ (x4—y4) does NOT tell you ANYTHING about flux o S |

* You need to account for the equilibrium relationship of solute in the liquid { da

versus the vapor at the interface {94:

* Because we have a flow of liquid and vapor, the bulk phase mole fractions x4, and y,
do not reach equilibrium

* Because x4 # x4; and y, #+ yy; there exists a driving force on both sides of the 2
interface — that is why we have a flux of solute from one phase to the other b
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Overall Mass Transfer Coefficients

e Overall Liguid Phase Mass Transfer Coefficient

Ny =K, (x5 —x4)

o (1.1 -
¥ \k, mk,

* xj isthe liquid mole fraction that would be in equilibrium with y, bulk phase gas mole fraction

* Note that m appears in a different location in the equation for liquid phase versus gas phase
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O
Overall Mass Transfer Coefficients
*  Four different expressions for Molar Flux
Ny=ky(Ya—Yai)
Need to calculate interfacial mole fractions
Ny =ky(xg —x4)
Ny=K,(ya—ya)
. Need to calculate Overall Mass Transfer Coefficients
NA — Kx(xA - xA)
q\
8 « b4
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Molar Flux

* All of our expressions have been for this case:
» Liquid shown on left of interface
» Vapor shown on right of interface
» Positive Flux indicates solute flow from right to left
« If flux is a negative number that indicates solute flow is from left to right

» Itis a good idea to draw a picture to make sure you understand the sign
convention for your case
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e Alternate Units

moles

 Concentration: Cc =
volume

c k
Ng=ky(Ya—Ya) = ky(Ya—Yai) * o ?y (ca—cai)
= kc(cq — cyi)

k
k6=7y

» Partial Pressure: % = ¢ (fromldeal Gas Law) and partial pressure P; = P * y;

/Rt

C

Ny=ky(Ya—Yai) = ky(Ya—yai) *

Kk
== (Pya—Pya) =kePa—Pa)
cRT RT

k¢

. Correlations generally give k., which has dimensions of velocity, "9/,
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Correlations for Mass Transfer Coefficients

Correlations are interpreted using Dimensionless Groups

The dimensionless groups will be composed of:
« L = a characteristic length
« Diameter for round or spherical objects — we will use Diam to avoid confusion with diffusivity, D
« U = characteristic velocity
* p = fluid density
e u = fluid viscosity
« v = fluid kinematic viscosity = #/,
We are looking at mixtures of Solute A and Solvent B

For dilute mixtures, the fluid properties may be approximated by using pure solvent B properties
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Reynolds Number

UL UL GL
Re = P _ (UL _GL
n 1 n

where G = p U, Mass Velocity

UL UL

* Re = w - where v =*/,, Kinematic Viscosity

/p v

* Reynolds number is the ratio of inertial to viscous forces
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Schmidt Number

_vV_H
D pD

Sc

* Where v is representative of the diffusivity of momentum
 Where D is the diffusivity of solute A

e Schmidt number is the ratio of momentum diffusivity (v) to mass diffusivity
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Sherwood Number

* kc ==58p

 Sherwood Number is the ratio of convective mass transfer to the rate of
diffusive mass transfer
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Stanton Number

St, = —
m U
kel v Dk (UL v)l
= X X— == % | — % —
D UL v D 14 D
Sh
St

" R.S.

* Stanton Number is the ratio of heat transferred into a fluid relative to the thermal capacity of the fluid o‘\
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Colburn j Factor for Mass Transfer

k uz/?’ S
. c h

2/
]M — =StMSC 3 =
U\pD ReSCI/B

* It has been observed that j; = % Fanning Friction Factor

. fFanning
Im 2

* The Fanning Friction factor is a well known function of the Reynolds Number in pipe flow
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Correlations for Mass Transfer Coefficients

* The correlations typically give you one of the three following:

Sp, or Sty or jym

* Any one of which can be converted to the other and can be used to get k.
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Mass Transfer to Walls of a Pipe with Turbulent Flow
McSH pp 549

1
S, =0.023 R,8 sc/ 3

* Which is equivalent to

ju =0.023 R, 94
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Mass Transfer in Gas Phase within Wetted Wall Tower
 “Wall” the gas sees is a wavy surface of the liquid running down the tower

Sp = 0.023 R%! s

* Result is very similar to walls of pipe correlation

* The difference is due to the waviness of the fluid surface versus the smooth pipe
wall
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~low Perpendicular Past a Single Cylinder

1 1
S, =0.61R, /2 S. /3

Flow Perpendicular Past a Single Sphere

_ Y2 ¢ 3
Sh=2.0+0.6R, %S,
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~low Through a Packed Bed of Spherical Particles

1
Sp =1.17 R,0>% Sc/ ’

ju =1.17 R;9413

* The U used to calculate R, is based on SUPERFICIAL VELOCITY

Volumetric Flow

Total Cross — sectional Area of Bed

« Even though part of the area is blocked by spheres

* Consult Text for Ranges of Applicability *
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