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Lecture 19

Instructor: Miao Yu

CE407 
SEPARATIONS

*Lecture material is provided by courtesy of Prof. David Courtemanche.
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• There exists a concentration gradient across a membrane/liquid layer and we 

want to determine the flux of solute A, 𝑵𝑨, from the left to the right...

𝑵𝑨 = 𝑵𝑨 +𝑵𝑩 𝒙𝑨 −𝑫𝑨𝑩 𝒄
𝒅𝒙𝑨
𝒅𝒙

Convective Diffusive

• Unfortunately, 𝑵𝑨 appears on both sides of the equation

Diffusion
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• (This assumption is similar to constant molal flow in a rectification column, where the rate that the 

light component passes from liquid to vapor is equal to the rate that the heavy component passes 

from vapor to liquid)

𝑵𝑨 +𝑵𝑩 = 𝟎

• The fluxes are equal and opposite

• In this case we are talking about A moving to the right and B moving to the left within the 

same phase

• Then…  𝑵𝑨 = 𝑵𝑨 +𝑵𝑩 𝒙𝑨 −𝑫𝑨𝑩 𝒄
𝒅𝒙𝑨

𝒅𝒙
becomes

𝑵𝑨 = −𝑫𝒄
𝒅𝒙𝑨

𝒅𝒙
Because 𝑫𝑨𝑩 = 𝑫𝑩𝑨 we can use 𝑫

• This can be rearranged to be:

𝑵𝑨 𝒅𝒙 = −𝑫𝒄𝒅𝒙𝑨

Equimolar Counter Diffusion (Equimolal Diffusion)
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𝑵𝑨 𝒅𝒙 = −𝑫𝒄𝒅𝒙𝑨

න𝑵𝑨 𝒅𝒙 = න−𝑫𝒄𝒅𝒙𝑨

• Remember that for a given temperature and pressure, 𝑫 is a constant and that we are considering 

𝒄 to be a constant, as well

• When we are at steady state 𝑵𝑨 is constant across our system 

• Otherwise there would be an accumulation of solute A somewhere in the system

• We can pull all of the constant values out of the integral

• At x = x1 = 0, the mole fraction is 𝒙𝑨,𝟏 and at x = x2 =  L, the mole fraction is 𝒙𝑨,𝟐

𝑵𝑨න
𝟎

𝑳

𝒅𝒙 = −𝑫𝒄 න
𝒙𝑨,𝟏

𝒙𝑨,𝟐

𝒅𝒙𝑨

Equimolar Counter Diffusion
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𝑵𝑨න
𝟎

𝑳

𝒅𝒙 = −𝑫𝒄 න
𝒙𝑨,𝟏

𝒙𝑨,𝟐

𝒅𝒙𝑨

𝑵𝑨 𝑳− 𝟎 = −𝑫𝒄 𝒙𝑨,𝟐 − 𝒙𝑨,𝟏

𝑵𝑨 = −
𝑫𝒄

𝑳
𝒙𝑨,𝟐 − 𝒙𝑨,𝟏

• or 𝑵𝑨 = −
𝑫𝒄

𝒙𝟐−𝒙𝟏
𝒙𝑨,𝟐 −𝒙𝑨,𝟏 = −𝑫

𝒄𝑨,𝟐−𝒄𝑨,𝟏

𝒙𝟐−𝒙𝟏
= −𝑫

∆𝑪𝑨

∆𝒙
Fick’s Law

𝑵𝑨 =
𝑫𝒄

𝑳
𝒙𝑨,𝟏 − 𝒙𝑨,𝟐

• Flux in 
𝒎𝒐𝒍𝒆𝒔

𝒂𝒓𝒆𝒂 ∗𝒕𝒊𝒎𝒆
for equimolar counter diffusion

Equimolar Counter Diffusion
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• A diffusing through non-diffusing B

• Book calls it “One-Way Diffusion”

• Remember the “Usual Assumptions” in gas absorption

• Air did not diffuse into the water

• Water did not evaporate into the air

• Call Acetone: A and Air: B

• For non-diffusing B: 𝑵𝑩 = 𝟎

𝑵𝑨 = 𝑵𝑨 +𝑵𝑩 𝒙𝑨 −𝑫𝑨𝑩 𝒄
𝒅𝒙𝑨
𝒅𝒙

𝑵𝑨 = 𝑵𝑨 𝒙𝑨 −𝑫𝒄
𝒅𝒙𝑨
𝒅𝒙

𝑵𝑨 𝟏− 𝒙𝑨 = −𝑫𝒄
𝒅𝒙𝑨

𝒅𝒙

One Component Mass Transfer
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𝑵𝑨 𝟏− 𝒙𝑨 = −𝑫𝒄
𝒅𝒙𝑨

𝒅𝒙

𝑵𝑨 𝒅𝒙 = −𝑫𝒄
𝒅𝒙𝑨
𝟏− 𝒙𝑨

න
𝟎

𝑳

𝑵𝑨 𝒅𝒙 = −𝑫𝒄 න
𝒙𝑨,𝟏

𝒙𝑨,𝟐 𝒅𝒙𝑨
𝟏− 𝒙𝑨

׬
𝒅𝒙𝑨

𝟏−𝒙𝑨
= −𝒍𝒏 𝟏− 𝒙𝑨 + 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒍𝒏 𝜶 − 𝒍𝒏 𝜷 = 𝒍𝒏

𝜶

𝜷

𝑵𝑨 𝑳− 𝟎 = 𝑫𝒄 𝒍𝒏 𝟏− 𝒙𝑨,𝟐 − 𝒍𝒏 𝟏− 𝒙𝑨,𝟏

𝑵𝑨 =
𝑫𝒄

𝑳
𝒍𝒏

𝟏− 𝒙𝑨,𝟐
𝟏− 𝒙𝑨,𝟏

One Component Mass Transfer
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𝒍𝒏 𝟏+𝜶 = 𝜶+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 𝑡ℎ𝑎𝑡 𝑑𝑟𝑜𝑝 𝑜𝑓𝑓 𝑓𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝛼

• For dilute solutions (𝒙𝑨,𝟏 and 𝒙𝑨,𝟐 are both small)

𝒍𝒏 𝟏− 𝒙𝑨,𝟏 ≈ −𝒙𝑨,𝟏 and 𝒍𝒏 𝟏− 𝒙𝑨,𝟐 ≈ −𝒙𝑨,𝟐

• Then 𝑵𝑨 ≈
𝑫𝒄

𝑳
−𝒙𝑨,𝟐 − −𝒙𝑨,𝟏 =

𝑫𝒄

𝑳
𝒙𝑨,𝟏 −𝒙𝑨,𝟐 which is approximately the same as 

the equimolar case 

Dilute Solutions
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• Equimolar Diffusion

𝑵𝑨 =
𝑫𝒄

𝑳
𝒙𝑨,𝟏 −𝒙𝑨,𝟐 eq 17.19

• One-Component

𝑵𝑨 =
𝑫𝒄

𝑳
𝒍𝒏

𝟏−𝒙𝑨,𝟐

𝟏−𝒙𝑨,𝟏
eq 17.24

• The book uses the following notation 
𝑫𝒄

𝑳
=

𝑫𝑽𝝆𝑴

𝑩𝑻

• The book also uses terminology shown in this diagram

• 𝑥𝐴𝑖 is interface concentration

• 𝑥𝐴 is bulk concentration

• Book also shows this analysis using 𝑦 for vapor phase

• Formulas are the same either way, just use consistent terms throughout

Recap
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• The one-component equation 𝑵𝑨 =
𝑫𝒄

𝑳
𝒍𝒏

𝟏−𝒙𝑨,𝟐

𝟏−𝒙𝑨,𝟏
can be worked algebraically to the following:

𝑵𝑨 =
𝑫𝒄

𝑳

𝒙𝑨,𝟏 −𝒙𝑨,𝟐

𝟏− 𝒙𝑨 𝑳

Where 𝟏− 𝒙𝑨 𝑳 =  
𝟏−𝒙𝑨,𝟐 − 𝟏−𝒙𝑨,𝟏

𝒍𝒏 ൘
𝟏−𝒙𝑨,𝟐

𝟏−𝒙𝑨,𝟏

the log mean of 𝟏− 𝒙𝑨

• 𝟏− 𝒙𝑨 𝑳 is referred to as “One-Way Correction” as it converts equimolar equation to one-way equation

“One-Way Correction” term



‘-

11

• A diffusing through non-diffusing B

gas phase 𝑵𝑨 =
𝑫𝒄

𝑳
𝒍𝒏

𝟏−𝒚𝑨

𝟏−𝒚𝑨𝒊
liquid phase  𝑵𝑨 =

𝑫𝒄

𝑳
𝒍𝒏

𝟏−𝒙𝑨

𝟏−𝒙𝑨𝒊

• These equations apply directly when all mass transfer occurs due to pure molecular diffusion

• Consider a case where there is turbulent flow… gas in a pipe (See figure in upper right corner)

• This is a much more complicated case than pure molecular diffusion

• Concentration = 𝒚𝑨 in the bulk gas

• Concentration at wall = 𝒚𝑨𝒊 at wall

• Concentration difference takes place across a zone of width “L”

Film Theory
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• We can express the flux in each phase as 

gas phase 𝑵𝑨 = 𝒌𝒚 𝒍𝒏
𝟏−𝒚𝑨

𝟏−𝒚𝑨𝒊
liquid phase  𝑵𝑨 = 𝒌𝒙 𝒍𝒏

𝟏−𝒙𝑨

𝟏−𝒙𝑨𝒊

• These expressions are dependent on the same bulk and surface mole fractions as before but now the 

constant is no longer 
𝑫𝒄

𝑳
, but is something different…

• 𝒌𝒙 and 𝒌𝒚 are MASS TRANSFER COEFFICIENTS

• They are determined experimentally

• They are NOT equal to 
𝑫 𝒄

𝑳

•
𝑫 𝒄

𝑳
is for pure molecular diffusion

• The mass transfer coefficients are affected by bulk mixing, etc

Film Theory
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𝑵𝑨 = 𝒌𝒚 𝒍𝒏
𝟏−𝒚𝑨

𝟏−𝒚𝑨𝒊
𝑵𝑨 = 𝒌𝒙 𝒍𝒏

𝟏−𝒙𝑨

𝟏−𝒙𝑨𝒊

• These equations can be manipulated into:

𝑵𝑨 =
𝒌𝒚

𝟏−𝒚𝑨 𝑳
𝒚𝑨𝒊 −𝒚𝑨 𝑵𝑨 =

𝒌𝒙

𝟏−𝒙𝑨 𝑳
𝒙𝑨𝒊 − 𝒙𝑨

Where 𝟏− 𝒙𝑨 𝑳 =  
𝟏−𝒙𝑨 − 𝟏−𝒙𝑨𝒊

𝒍𝒏 ൘
𝟏−𝒙𝑨

𝟏−𝒙𝑨𝒊

is the log mean of 𝟏−𝒙𝑨 and similar for y values

• Remember the log mean is the “one way correction” factor

• Now we can also express as:

𝑵𝑨 = 𝒌𝒚
′ 𝒚𝑨𝒊 −𝒚𝑨 𝑵𝑨 = 𝒌𝒙

′ 𝒙𝑨𝒊 − 𝒙𝑨

Film Theory
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𝑵𝑨 = 𝒌𝒙 𝒍𝒏
𝟏−𝒙𝑨

𝟏−𝒙𝑨𝒊
𝑵𝑨 = 𝒌𝒚 𝒍𝒏

𝟏−𝒚𝑨𝒊

𝟏−𝒚𝑨
Note that expressions are for flow from right to left

• In these processes the concentrations are often dilute and the error introduced by the following 

approximation is less than the uncertainty in the values of the mass transfer coefficients…

𝑵𝑨 =
𝒌𝒙

𝟏−𝒙𝑨 𝑳
𝒙𝑨𝒊 −𝒙𝑨 = 𝒌𝒙

′ 𝒙𝑨𝒊 − 𝒙𝑨 𝑵𝑨 =
𝒌𝒚

𝟏−𝒚𝑨 𝑳
𝒚𝑨 −𝒚𝑨𝒊 = 𝒌𝒚

′ 𝒚𝑨 −𝒚𝑨𝒊

• In these dilute cases 𝒌𝒙 ≈ 𝒌𝒙
′ and 𝒌𝒚 ≈ 𝒌𝒚

′ , so…

𝑵𝑨 = 𝒌𝒙 𝒙𝑨𝒊 − 𝒙𝑨 𝑵𝑨 = 𝒌𝒚 𝒚𝑨 −𝒚𝑨𝒊

• This expression is not strictly true, but in dilute cases the difference between One-Component and 

Equimolar mass transfer is not that large

Film Theory – Gas Absorption Case
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• Flux is a mass transfer coefficient multiplied by a driving force

𝑵𝑨 = 𝒌𝒙 𝒙𝑨𝒊 −𝒙𝑨

Mass transfer coefficient driving force

• The mass transfer coefficient contains (via experimental data and, perhaps, 

correlations) all of the complicated physics of mixing, etc)

Mass Transfer Coefficient
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• A molecule travels from bulk gas phase to bulk liquid phase

At steady state:

• Flux of solute A traveling from bulk gas to the interface MUST 

equal the flux of solute A traveling from the interface to the bulk 

liquid

• Equality of Flux

𝒌𝒚 𝒚𝑨 −𝒚𝑨𝒊 = 𝒌𝒙 𝒙𝑨𝒊 −𝒙𝑨

• The concentration of 𝑦𝐴𝑖 and 𝑥𝐴𝑖 are in equilibrium with one 

another

𝒚𝑨𝒊 = 𝒚∗ 𝒙𝑨𝒊

• Might be Raoult’s or Henry’s Law or some other relationship…

Two Film Theory
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• Measuring bulk concentrations, 𝒙𝑨 and 𝒚𝑨, is challenging enough – measuring interfacial concentrations, 𝒙𝑨𝒊
and 𝒚𝑨𝒊, is much more difficult.

• What to do?

• Rearrange the equality of flux expression: 

𝒌𝒚 𝒚𝑨 −𝒚𝑨𝒊 = 𝒌𝒙 𝒙𝑨𝒊 −𝒙𝑨

𝒚𝑨 −𝒚𝑨𝒊
𝒙𝑨𝒊 −𝒙𝑨

=
𝒌𝒙
𝒌𝒚

𝒚𝑨𝒊 −𝒚𝑨
𝒙𝑨𝒊 −𝒙𝑨

=
𝒚𝑨 −𝒚𝑨𝒊
𝒙𝑨 −𝒙𝑨𝒊

= −
𝒌𝒙
𝒌𝒚

Two Film Theory
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• Pick a location (height) in your tower and determine the values of the bulk concentrations, 𝒙𝑨 and 𝒚𝑨

• Plot the point 𝒙𝑨, 𝒚𝑨 on your graph

• Draw a line from that point with a slope of −
𝒌𝒙

𝒌𝒚

• The equation of this line will be:

𝒚− 𝒚𝑨 = −
𝒌𝒙

𝒌𝒚
𝒙− 𝒙𝑨

• From the previous slide:

𝒚𝑨𝒊−𝒚𝑨

𝒙𝑨𝒊−𝒙𝑨
= −

𝒌𝒙

𝒌𝒚

• Substitute that into the equation for this line

𝒚− 𝒚𝑨 =
𝒚𝑨𝒊 −𝒚𝑨
𝒙𝑨𝒊 − 𝒙𝑨

𝒙− 𝒙𝑨

• Note that when 𝒙 = 𝒙𝑨𝒊 then 𝐲 = 𝒚𝑨𝒊

• Therefore this line is a collection of all points 𝒙𝑨𝒊, 𝒚𝑨𝒊 that satisfy the Equality of Flux Requirement

Two Film Theory
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• Any point on that line will satisfy the Equality of Flux 

Requirement for bulk conditions 𝒙𝑨, 𝒚𝑨

• We know that the true interfacial mole fractions 𝒙𝑨𝒊, 𝒚𝑨𝒊
must be in equilibrium with one another

• Add the equilibrium curve to the graph

• We know that all the combinations of mole fractions that 

are in equilibrium will be on the EQ curve

• The intersection of the line and the equilibrium curve is 

the actual pair of mole fractions 𝒙𝑨𝒊, 𝒚𝑨𝒊 that satisfy both 

the Equality of Flux and the Equilibrium Requirement! 

• This graphical method has allowed us to determine the 

interfacial mole fractions 𝒙𝑨𝒊, 𝒚𝑨𝒊 based on the more 

easily measured bulk mole fractions 𝒙𝑨, 𝒚𝑨

Two Film Theory


