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Diffusion % A
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* There exists a concentration gradient across a membrane/liquid layer and we

want to determine the flux of solute A, N4, from the left to the right...

dx X, -
Ny = (NA+NB)xA_DABC_A C k- Q\

MI/'/\"“dx"'

Convective Diffusive

* Unfortunately, N4 appears on both sides of the equation
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Equimolar Counter Diffusion (Equimolal Diffusion)

(This assumption is similar to constant molal flow in a rectification column, where the rate that the
light component passes from liquid to vapor is equal to the rate that the heavy component passes
from vapor to liquid)

NA + NB — O
The fluxes are equal and opposite

* In this case we are talking about A moving to the right and B moving to the left within the
same phase

Then... Ny=(N4+ Ng)xy —Dygc % becomes

/NLAZ_ﬂDC/dx Because D g = Dg, We can use D
. 1 ,’0"]
This can be rearranged to be: /0\ rect

Nydx =—-D cdxy
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Equimolar Counter Diffusion
Nydx =—-D cdx,

/ A

jNAdx=j—DcdxA

* Remember that for a given temperature and pressure, D is a constant and that we are considering

N———
c to be a constant, as well
~——

* When we are at steady state N4 is constant across our system
Ne——o .
» Otherwise there would be an accumulation of solute A somewhere in the system

* We can pull all of the constant values out of the integral

* Atx=x, =0, the mole fraction is x4 ; and at x =X, = L, the mole fraction is x4 ,

L XA,2 -
NAf dx = —Dcf dx, o (o Ry
0 xa1 —t e
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O
Equimolar Counter Diffusion - )
L XA2 5;‘_+\ v
NAjdxz—ch dx, i c
0 XA1 A _\"' e V*t}ﬂ
Na(L—0)=—-Dc(xg2 —x41) T\l:}
Dc <Y ( A L )
M=) X = -
e Or N, = —xZD_il (xA,Z — xA,l) =—D — ‘% | Fick’s Law
Dc
Na=—- (xa1—xa2)
q\
*  Fluxin —22¢_ for equimolar counter diffusion
area xtime 5 N
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One Component Mass Transfer

A diffusing through non-diffusing B
» Book calls it “One-Way Diffusion”

Remember the “Usual Assumptions” in gas absorption

» Air did not diffuse into the water
« Water did not evaporate into the air

Call Acetone: A and Air: B
For non-diffusing B: Ng=0

d.xA
NA—(NA+%)xA—DABCd—
x
N,=N pe P
A= NgXy c dx
N,1—x,)=-Dc%4
A Xq) = c dx

P s s O
Aipr K
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One Component Mass Transfer

dx p—
a3 = D g b
N 27 =l 8 2 et -
—— a > X
dxA — —— e
Nydx=-Dc Na &
1-x, R S
ii'“:x" - - x& - SP———
L xA,2 dxA -
j 2dx=—-Dc J
0 xA,l 1 o xA
_ - -
] dxA(L: —In(1 — x,) + constant In(a) — In(B) = In (C—l)
1—xA A ﬁ
N - A/L\
Nag(L—0)=Dc|ln(1—x4,) —In(1—2x4,)]
Ve
[ Q
Dc 1-— XA2 \\\
Ny =— ' .
A L ln(l_xA,l) 7 7 \\
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Dilute Solutions

In(1+ a) = a + higher order terms that drop of f for small a

* Fordilute solutions (x4 1 and x4, are both small)

’+(\>(A l)

ln(l — xA’l) =~ and ln(l — xA’Z) = —xA’Z
«_ /\_ﬁ
e Then Ny = DTC —x42 — (—x41)]| = DTC (x41—x42) which is approximately the same as

the equimolar case D —
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Recap

* Equimolar Diffusion

NA = %' (xA,l — xA’z) eql7.19

*  One-Component

Dc 1-x
Ny=— ln( A'z) eq 17.24

. . D D
* The book uses the following notation LC =

* The book also uses terminology shown in this diagram
* xy; IS interface concentration
* x4 IS bulk concentration

* Book also shows this analysis using y for vapor phase

* Formulas are the same either way, just use consistent terms throughout
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O
“One-Way Correction” term
* The one-component equation N4 = DTC In (1:iji) can be worked algebraically to the following:
4= P2
\lj (1—x4)p &
Where (1 —2x4); 3 (12122)2;(1_”'1) the log mean of (1 — x,,)
ln[ ’ / (1—XA,1)]
e (1 —xy) is referred to as “One-Way CBrrecﬁonLa?i(-eerK/erts eguimolar equation to one-way equation
q\
10 = b4
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~1lm Theory
* Adiffusing through non-diffusing B

YA Y *a
A l "ldJ

gas phase N4 = D{ln(l‘“ﬁ% liquid phase N, = DTC ln(l—xA

1-y4i 1-xy4;

* These equations apply directly when all mass transfer occurs due to @ure molecular diffusion

* Consider a case where there is turbulent flow... gas in a pipe (See figure in upper right corner)

This is a much more complicated case than pure molecular diffusion

Concentration = y;imthe bulk ga T

Concentration at wall = y4; at wall
Concentration difference takes place across a zone of width “L” N
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~1lm Theory

* We can express the flux in each phase as

/
B 1-y, . e =
gas phase N4 =k, In ( 1_}’Ai) liquid phase N, =k, In ( 1_xAi)
- T / -
* These expressions are dependent on the same bulk and surface mole fractions as before but now the
constant is no longe but is something different...

* k,and k, are MASS TRANSFER COEFFICIENTS
» They are determined experimentally
 They are@ equal to %

Dc . .
. Tc Is for pure molecular diffusion

« The mass transfer coefficients are affected by bulk mixing, etc
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~1lm Theory

Ny =k, In (11_‘;:)

* These equations can be manipulated into:

=

N4 Vai —Ya) N4

Where (1 — x,), = (1[(_125/(1_“")] is the log mean of (1 — x,4) and similar for y values
In
(1-x4;)

* Remember the log mean is the “one way correction” factor

* Now we can also express as:

N, =|ky(Vai — Ya) N, z@xAi — X4)
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~1Ilm Theory — Gas Absorption Case
zn equ:(iby ik
GAS

Fim TheorY
Llﬁ&mo

‘s‘la.s

Ny =keln(:=2) Ny = ky In(T24)

1-y4

* Inthese processes the concentratiorgmmm the error introduced by the following

Note that expressions are for flow from right to left
-\__/”_

approximation is less than the uncertainty in the values of the mass transfer coefficients. ..

(x2i — x4) = k3 (x4; — X4)

k /
N, = m (Ya—Yai) = ky(Ya— yai)

ky(xXp; — X2) Ng=ky(Ya—Yai) q\
* This expression is not strictly true, but in dilute cases the difference between One-Component and
14

Equimolar mass transfer is not that large
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Mass Transfer Coefficient

* Fluxis a mass transfer coefficient multiplied by a driving force

Ny =k, (xg —x4)

N

Mass transfer coefficient driving force

* The mass transfer coefficient contains (via experimental data and, perhaps,

correlations) all of the complicated physics of mixing, etc)
\’
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Two Film Theory

* A molecule travels from bulk gas phase to bulk liquid phase

At steady state:
\ TN

*  Flux of solute A traveling from bulk gas to the interface MUST
equal the flux of solute A traveling from the interface to the bulk
liquid
« Equality of Flux

ky Va—Yai) = Ky (x4; — x4)
N

N~

* The concentration of y,; and x,; are in equilibrium with one
another

Yai =Y (Kai

* Might be Raoult’s or Henry’s Law or some other relationship...
— Q
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Two Film Theory

* Measuring bulk concentrations, x4 and y,4, is challenging enough — measuring interfacial concentrations, xy;
and y,;, is much more difficult.

« What to do?

* Rearrange the equality of flux expression:

k, (Va—Yai) = kx (xq; — x4)

Ya—Yai _ k.

Xai — X4 ky

Yai—Ya | Ya—Yai _ ks — >/A ; )y
Ry

Xai — X4 | Xa— Xa; k,
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Two Film Theory

Pick a location (height) in your tower and determine the values of the bulk concentrations, x4 and y,4

* Plot the point (x4, y4) on your graph

* Draw a line from that point with a slope o —% 1 U A\
y [S—

*  The equation of this line will be:

Fex

Y=Ya={"%, X —Xy)

*  From the previous slide:

*  Substitute that into the equation for this line
B :yAi_yA(x_x )
Y—DXa Xai— X4 A
* Note that when x = x4; theny = yy;

e Therefore this line is a collection of all points (x4;, ¥4;) that satisfy the Equality of Flux Requirement 18
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Two Film Theory

Any point on that line will satisfy the Equality of Flux | )

Requirement for bulk conditions (x4, y4)

8 cuRvg
*  We know that the true interfacial mole fractions (x4;, ¥ 4;) L.._sli’.‘__
must be in equilibrium with one another N
* Add the equilibrium curve to the graph I Ka Jx.
* We know that all the combinations of mole fractions that
are in equilibrium will be on the EQ curve x&L

* The intersection of the line and the equilibrium curve is
the actual pair of mole fractions (x4;, y4;) that satisfy both
the Equality of Flux and the Equilibrium Requirement!

* This graphical method has allowed us to determine the
interfacial mole fractions (x,4;, y4;) based on the more
easily measured bulk mole fractions (x4, y4)



