CE407 SEPARATIONS

Lecture 18

Instructor: Miao Yu

- University at Buffalo

Department of Chemical
and Biological Engineering
School of Engineering and Applied Sciences

世衁 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Mass Transfer McSH pp 527-559

- Up to this point we have looked at absorption/stripping/rectification on terms of discrete stages and worked with the principle that each stage has liquid and vapor exiting that stage in equilibrium
- (or modified that assumption using efficiencies)
- Packed towers do not have discrete stages but rather a continuous array of objects that are wetted by the liquid in order to provide surface area for mass transfer
- Before we can analyze packed towers we need to begin to understand the actual mass transfer occurring between the two phases

G五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Mass Transfer

- Expand overall mass balance on tower to equilibrium stages to actual mass transfer

- Mass transfer occurs at the interface between vapor bubbles and continuous liquid
- The interface is distributed across the spherical surface of a very large number of bubbles

五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Mass Transfer

- Treat the interfacial surface as a plane
- To an individual molecule the curvature of the bubble is not significant
- A toluene molecule must:
- Diffuse through the vapor phase to reach the interface
- Cross the interface (thus condensing)
- Diffuse into the liquid phase
- A benzene molecule must follow a similar path in the opposite direction

G五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Packed Absorption Tower

- The liquid wets out the packing in order to provide a large surface area
- Vapor flows up over the wetted packing
- Mass transfer occurs at the vapor/liquid interface
- There are no discrete stages to declare as having reached "equilibrium"
- The mass transfer is occurring in a continuous fashion
- We need to analyze this by looking at the actual diffusion of mass

Calculation of Diffusion Coefficients (CE 318)

- Binary mixture of A and B molecules
- If there is a concentration gradient of A then the A molecules will travel in the direction of lower A concentration

- $J_{A}=-D_{A B} \frac{d c_{A}}{d x} \quad$ Fick's Law J_{A} has units of $\frac{\text { moles }}{\text { area } * \text { time }}$
- For a generic solute, 伩, in solvent S $J_{i}=-D_{i} \frac{d c_{i}}{d x}$
- $D_{i}=D_{i S}$, it is specific to the given solvent

世画 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

Diffusion Coefficients - Diffusion in Liquids

- Wilke-Chang eq 17.32 McSH pp 538

$$
D_{A B}=7.4 * 10^{-8} \frac{\left(\psi_{B} M_{B}\right)^{1 / 2} T}{\mu V_{A}^{0.6}} \text { in units of } \frac{\mathrm{cm}^{2}}{s}
$$

- This approximation is good for small molecules (not polymers or protein molecules)
- This is a fitted approximation to experimental data
- $\boldsymbol{\psi}_{B} \boldsymbol{M}_{B}$ is an effective characterization of the molecular weight of solvent, B
- $\boldsymbol{M}_{\boldsymbol{B}}$ is the molecular weight of component B
- $\boldsymbol{\psi}_{B}$ is related to behavior of solvent B
- For water the hydrogen bonds make the molecules act as though they are clumps of molecules relative to the solute diffusing through the solvent
- $\boldsymbol{\psi}_{B}=2.26$ for water and is approximately $\boldsymbol{\psi}_{B}=1$ for many organic solvents
- $\quad \mathbf{T}$ is temperature in Kelvin
- $\quad \boldsymbol{\mu}$ is viscosity of the solution in cP, for dilute solutions this can often be approximated as the viscosity of the solvent

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Diffusion Coefficients－Diffusion in Liquids

－ V_{A} is the molar volume of the solute－the molar volume $\left(\frac{\mathrm{cm}^{3}}{m o l}\right)$ of the solute as a LIQUID at its boiling point
－What if the solute is a solid that would decompose before reaching a melting point？Schroeder＇s Method

$$
V_{A}=\left(N_{C}+N_{H}+N_{O}+N_{N}+N_{d b l}-N_{\text {ring }}\right) * 7 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

－Where：
－N_{C} is the number of carbon atoms
－N_{H} is the number of hydrogen atoms
－N_{O} is the number of oxygen atoms
－N_{N} is the number of nitrogen atoms
－$N_{d b l}$ is the number of double bonds
－$N_{\text {ring }}$ is the number of separate ring structures（fused rings count as 1）
－If you have data，always use data！Otherwise use the Schroeder method

Diffusion Coefficients－Diffusion in Vapor Phase

－Chapman－Enskog（kinetic theory of gases）eq 17.28

$$
D_{A B}=\frac{0.001858 T^{3 / 2}\left[\left(M_{A}+M_{B}\right) / M_{A} M_{B}\right]^{1 / 2}}{P \sigma_{A B}^{2} \Omega_{D}}
$$

－ $\boldsymbol{D}_{A B}$ is in $\frac{\mathrm{cm}^{2}}{\mathrm{~s}}$
－ T is temperature in Kelvin
－ \boldsymbol{M}_{A} is the molecular weight of solute A
－ $\boldsymbol{M}_{\boldsymbol{B}}$ is the molecular weight of solvent B
－ \mathbf{P} is pressure in atmospheres
－Lennard－Jones parameters，Appendix 19，on pp 1111－1112 of McSH $7^{\text {th }}$ Edition
－$\sigma_{A B}=\frac{1}{2}\left(\sigma_{A}+\sigma_{B}\right)$
This is effective collision diameter in \AA

－$\epsilon_{A B}=\sqrt{\epsilon_{A} \epsilon_{B}}$
This is a force constant，tabulated as $\frac{\epsilon}{K_{B}}$ ，with units of K （Kelvin）

U五 Universityat Buffalo $\begin{aligned} & \text { Department of Chemical }\end{aligned}$ and Biological Engineering school f f fyineeingand Anplies sciences

1112 APPENDIX 19: Collision Integral and Lennard-Jones Force Constants

- Lennard-Jones force constants

Compound	$\varepsilon / k(\mathbf{K})$	$\boldsymbol{\sigma}(\boldsymbol{\AA})$
Acetone	560.2	4.600
Acetylene	231.8	4.033
Air	78.6	3.711
Ammonia	588.3	2.900
Argon	93.3	3.542
Benzenc	412.3	5.349
Bromine	507.9	4.296
n-butane	310	5.339
i-butane	313	5.341
Carbon dioxide	195.2	3.941
Carbon disulfide	467	4.483
Carbon monoxide	91.7	3.690
Carbon tetrachloride	322.7	5.947
Carbonyl sulfide	336	4.130
Chlorine	316	4.217
Chloroform	340.2	5.389
Cyanogen	348.6	4.361
Cyclohexane	297.1	6.182
Cyclopropane	248.9	4.807
Ethane	215.7	4.443
Ethanol	362.6	4.530
Ethylene	224.7	4.163
Fluorine	112.6	3.357
Helium	10.22	2.551
n Hexane	339.3	5.949
Hydrogen	59.7	2.827
Hydrogen cyanide	569.1	3.630
Hydrogen chloride	344.7	3.339
Hydrogen iodide	288.7	4.211
Hydrogen sulfide	301.1	3.623

Collision integral Ω_{p}

$\frac{k T}{\varepsilon_{12}}$	Ω_{n}	$\frac{k T}{\sigma_{12}}$	Ω_{p}	$\frac{k T}{\sigma_{12}}$	Ω_{D}
0.30	2.662	1.65	1.153	4.0	0.8836
0.35	2.476	1.70	1.140	- 4.1	0.8788
0.40	2.318	1.75	1.128	4.2	0.8340
0.45	2.184	1.80	1.116	4.3	0.8694
0.50	2.066	1.85	1.105	4.4	0.8652
0.55	1.966	1.90	1.094	4.5	0.8610
0.60	1.877	1.95	1.084	4.6 "	0.8568
0.65	1.798	2.00	1.075	4.7	0.8530
0.70	1.729	2.1	1.057	4.8	0.8492
0.75	1.667	2.2	1.041	4.9	0.8456
0.80	1.612	23	1.026	5.0	0.8422
0.85	1.562	2.4	1.012	6	0.8124
0.90	1.517	2.5	0.9996	7	0.7896
0.95	1.476	2.6	0.9878	8	0.7712
1.00	1.439	2.7	0.9770	9	0.7556
1.05	1.406	2.8	0.9672	10	0.7424
1.10	1.375	2.9	0.9576	20	0.6540
1.15	1.346	3.0	0.9490	30	0.6232 0.5060
1.20	1.320	3.1	0.9406	40	0.5960 0.5756
1.25	1.296	3.2	0.9328	50	0.5756 0.5596
130	1.273	3.3	0.9256	60	0.5596
1.35	1.253	3.4	0.9186	70 80	0.5464
1.40	1.233	3.5	0.9120 0.9058	80 90	0.5256
1.45	1.215	3.6	09058 0.8998	100	0.5130
1.50 1.55	1.198	3.7 3.8	0.8998 0.8942	200	0.4644
1.55	1.182	3.8 3.9	0.8942 0.8888		0.4179
1.60	1.167	3.9	0.8888	400	0.41%

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Diffusion Coefficients - Diffusion in Vapor Phase

- Chapman-Enskog (kinetic theory of gases) eq 17.28

$$
D_{A B}=\frac{0.001858 T^{3 / 2}\left[\left(M_{A}+M_{B}\right) /\left(M_{A} M_{B}\right)\right]^{1 / 2}}{P \sigma_{A B}^{2} \Omega_{D}}
$$

- Collision Integral $\Omega_{D}=f\left({ }^{K_{B} T} / \epsilon_{A B}\right)$ where K_{B} is Boltzmann's Constant
- This function is tabulated on pp 1111 (Appendix 19)
- Diffusivity depends on temperature as $T^{3 / 2}$, BUT Ω_{D} also depends on temperature
- Typically, $\boldsymbol{D}_{A B} \propto \boldsymbol{T}^{\mathbf{1} .75}$ and depends on pressure as \boldsymbol{P}^{-1}
- If you have $\boldsymbol{D}_{A B}$ at one temperature and pressure for a pair of components, you can estimate at your temperature and pressure using $T^{1.75}$ and P^{-1}
- Correlations are a good resort if you do not have data, but USE EXPERIMENTAL DATA IF YOU HAVE IT

G五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Solute Flux

McSH pp 528-535

- 1D flow - one dimensional in that the flux is independent of the y and z axes
- Eq 17.3a $\boldsymbol{N}_{\boldsymbol{A}}=\boldsymbol{u}_{\boldsymbol{A}} \boldsymbol{c}_{\boldsymbol{A}} \quad$ Flux of A
$\frac{\text { mole }}{\text { area *time }}$ of A passing through "window"
- Eq 17.3b

$$
N_{B}=u_{B} c_{B}
$$

Flux of B
$\frac{\text { mole }}{\text { area } * \text { time }}$ of B passing through "window"

- u_{i} is the average speed of component i molecules
- $\boldsymbol{c}_{\boldsymbol{i}}$ is the concentration of component i

$$
N_{i}=u_{i} c_{i}
$$

Solute Flux

Side view of the slab，consider a time increment Δt
－An A molecule will travel the distance $\boldsymbol{u}_{A} \Delta t$
－Any molecules further to the left of the plane we are considering by a distance greater than $\boldsymbol{u}_{\boldsymbol{A}} \Delta \mathrm{t}$ will NOT cross the plane
－Any molecule that is within a distance of $\boldsymbol{u}_{A} \Delta \mathbf{t}$ WILL cross the plane in the time
 period Δt
－This defines a volume of $\boldsymbol{u}_{\boldsymbol{A}} \Delta \boldsymbol{t} \boldsymbol{A}$ that contains all of the molecules that will cross the plane．（A is the cross－sectional area of the control volume．）
－The number of molecules within that volume is $\boldsymbol{u}_{A} \Delta t A c_{A}$
－ \boldsymbol{c}_{A} is $\frac{\text { moles }}{\text { volume }}$
－This is the number of moles that will cross the plane during time Δt
－$N_{A}=\frac{\text { moles }}{\text { area } * \text { time }}$ crossing the plane
－$N_{A}=\frac{u_{A} \Delta t A c_{A}}{A \Delta t}=u_{A} c_{A} \quad$ eq 17．3a

G五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

Diffusion

－When we talk about diffusion，we are talking about the motion of a component relative to the mixture that it is in．

Mixture Flowing through a pipe
－We could measure the number of molecules of A passing a plane／（area＊time）

－That is NOT diffusive flux
－Much of that flow of component A is from motion due to the flow of the mixture
－We want to determine motion of A relative to the motion of the mixture

Diffusion refers to the motion of a constituent in a mixture relative to the volume average velocity of the mixture

Diffusive Flux

－If molar density $\left(\frac{\text { total moles }}{\text { volume }}\right)$ is constant（or nearly constant）then the mole average velocity and volume average velocity are the same
－A derivation based on mole average velocity is more straightforward
－The results are the same for mole average as they are for volume average
－$\overline{\boldsymbol{U}}=\boldsymbol{x}_{\boldsymbol{A}} \boldsymbol{u}_{A}+x_{B} \boldsymbol{u}_{\boldsymbol{B}}$ this is mole average velocity（ U_{0} in textbook）
Flux relative to average motion of mixture is Diffusive Flux

$$
\begin{aligned}
& \boldsymbol{J}_{A}=\left(\boldsymbol{u}_{\boldsymbol{A}}-\overline{\boldsymbol{U}}\right) \boldsymbol{c}_{\boldsymbol{A}} \frac{\text { moles }}{\text { area*time }} \\
& \boldsymbol{J}_{\boldsymbol{B}}=\left(\boldsymbol{u}_{\boldsymbol{B}}-\overline{\boldsymbol{U}}\right) \boldsymbol{c}_{\boldsymbol{B}} \frac{\text { moles }}{\text { area*time }}
\end{aligned}
$$

－J is the symbol for diffusive flux
－$J_{A}+J_{B}=u_{A} c_{A}+u_{B} c_{B}-\bar{U}\left(c_{A}+c_{B}\right)$

$$
\begin{aligned}
& =u_{A} x_{A} c+u_{B} x_{B} c-\bar{U} c=\left(u_{A} x_{A}+u_{B} x_{B}\right) c-\bar{U} c \\
& =\bar{U} c-\bar{U} c=0
\end{aligned}
$$

- University at Buffalo

世五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Flux

$$
N_{A}=u_{A} c_{A}=\bar{U} c_{A}+u_{A} c_{A}-\bar{U} c_{A}
$$

Overall flux of $\mathrm{A} \quad$ eq 17.3a we just added and subtracted $\bar{U} c_{A}$

$$
\begin{gathered}
N_{A}=\bar{U} c_{A}+\left(u_{A}-\bar{U}\right) c_{A} \\
N_{A}=\bar{U} c_{A}+J_{A}=\bar{U} c_{A}-D_{A B} \frac{d c_{A}}{d x}
\end{gathered}
$$

- Convective flux is the flux due to the overall flow of liquid as a whole
- $\boldsymbol{D}_{A B}$ is the diffusion coefficient of A diffusing through B

世五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences
Flux

$$
\begin{aligned}
& N_{A}=\bar{U} c_{A}-D_{A B} \frac{d c_{A}}{d x} \\
& N_{B}=\bar{U} c_{B}-D_{B A} \frac{d c_{B}}{d x}
\end{aligned}
$$

－Note that diffusivity in second equation is $\boldsymbol{D}_{\boldsymbol{B A}}$ ，for B diffusing through A
－Textbook uses＂b＂as the direction，not＂x＂
－One might be interested in either flow
－$N=N_{A}+N_{B}=u_{A} c_{A}+u_{B} c_{B} \quad$＂the flux of everything＂

$$
\begin{aligned}
& =u_{A} x_{A} c+u_{B} x_{B} c \\
& =\left(u_{A} x_{A}+u_{B} x_{B}\right) c \\
& =\bar{U} c
\end{aligned}
$$

T| University at Buffalo

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences
Flux

$$
\begin{aligned}
N_{A} & =\bar{U} c_{A}-D_{A B} \frac{d c_{A}}{d x} \\
& =\bar{U} c x_{A}-D_{A B} \frac{d\left(c x_{A}\right)}{d x}
\end{aligned}
$$

From previous slide $\mathbf{N}=N_{A}+N_{B}=\bar{U} c$
c can be taken out of derivative because it is constant
Note that x_{A} is a mole fraction while x in the denominator is just the x axis, a direction

$$
N_{A}=\left(N_{A}+N_{B}\right) x_{A}-D_{A B} c \frac{d x_{A}}{d x}
$$

- Similar steps for B lead to

$$
\begin{aligned}
& N_{A}=\left(N_{A}+N_{B}\right) x_{A}-D_{A B} c \frac{d x_{A}}{d x} \\
& N_{B}=\left(N_{A}+N_{B}\right) x_{B}-D_{B A} c \frac{d x_{B}}{d x}
\end{aligned}
$$

玉 $\mathbf{5}$ Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences
Reciprocal Relation of $D_{A B}$ and $D_{B A}$

$$
J_{A}=-D_{A B} \frac{d c_{A}}{d x} \quad J_{B}=-D_{B A} \frac{d c_{B}}{d x}
$$

- We know that $J_{A}+J_{B}=\mathbf{0}$ therefore $J_{A}=-J_{B}$
- Also

$$
\begin{aligned}
& c_{A}+c_{B}=c=\text { constant } \\
& \qquad \frac{d c_{A}}{d x}+\frac{d c_{B}}{d x}=\frac{d c}{d x}=0 \\
& \frac{d c_{A}}{d x}=-\frac{d c_{B}}{d x}
\end{aligned}
$$

5 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Reciprocal Relation of $D_{A B}$ and $D_{B A}$

$$
\begin{gathered}
\frac{d c_{A}}{d x}=-\frac{d c_{B}}{d x} \quad \text { and } \quad J_{A}=-J_{B} \\
J_{B}=-D_{B A} \frac{d c_{B}}{d x}
\end{gathered}
$$

- Making substitutions

$$
\begin{array}{ll}
J_{B}=-J_{A}=-D_{B A}\left(-\frac{d c_{A}}{d x}\right) & \text { substitute } \frac{d c_{A}}{d x}=-\frac{d c_{B}}{d x} \\
J_{A}=-D_{B A}\left(\frac{d c_{A}}{d x}\right) & \text { drop a negative sign on each side }
\end{array}
$$

- But, by definition

$$
J_{A}=-D_{A B}\left(\frac{d c_{A}}{d x}\right)
$$

- Therefore:

$$
\begin{equation*}
D_{B A}=D_{A B} \tag{eq 17.11}
\end{equation*}
$$

