CE407 SEPARATIONS

Lecture 18

Instructor: Miao Yu

Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Mass Transfer McSH pp 527-559

- Up to this point we have looked at absorption/stripping/rectification on terms of discrete stages and worked with the principle that each stage has liquid and vapor exiting that stage in equilibrium
 - (or modified that assumption using efficiencies)
- Packed towers do not have discrete stages but rather a continuous array of objects that are wetted by the liquid in order to provide surface area for mass transfer
- Before we can analyze packed towers we need to begin to understand the actual mass transfer occurring between the two phases

Mass Transfer

• Expand overall mass balance on tower to equilibrium stages to actual mass transfer

- Mass transfer occurs at the interface between vapor bubbles and continuous liquid
- The interface is distributed across the spherical surface of a very large number of bubbles

- Treat the interfacial surface as a plane
 - To an individual molecule the curvature of the bubble is not significant
- A toluene molecule must:
 - Diffuse through the vapor phase to reach the interface
 - Cross the interface (thus condensing)
 - Diffuse into the liquid phase
- A benzene molecule must follow a similar path in the opposite direction

Packed Absorption Tower

- The liquid wets out the packing in order to provide a large surface area
- Vapor flows up over the wetted packing
- Mass transfer occurs at the vapor/liquid interface
- There are no discrete stages to declare as having reached "equilibrium"
- The mass transfer is occurring in a continuous fashion
- We need to analyze this by looking at the actual diffusion of mass

Calculation of Diffusion Coefficients (CE 318)

- Binary mixture of A and B molecules
- If there is a concentration gradient of A then the A molecules will travel in the direction of lower A concentration

Diffusion Coefficients - Diffusion in Liquids

• Wilke-Chang eq 17.32 McSH pp 538

$$D_{AB} = 7.4 * 10^{-8} \frac{(\psi_B M_B)^{1/2} T}{\mu V_A^{0.6}}$$
 in units of $\frac{cm^2}{s}$

- This approximation is good for small molecules (not polymers or protein molecules)
- This is a fitted approximation to experimental data
- $\psi_B M_B$ is an effective characterization of the molecular weight of solvent, B
 - M_B is the molecular weight of component B
 - ψ_B is related to behavior of solvent B
 - For water the hydrogen bonds make the molecules act as though they are clumps of molecules relative to the solute diffusing through the solvent
 - $\psi_B = 2.26$ for water and is approximately $\psi_B = 1$ for many organic solvents
- **T** is temperature in Kelvin
- μ is viscosity of the solution in cP, for dilute solutions this can often be approximated as the viscosity of the solvent

Diffusion Coefficients - Diffusion in Liquids

- V_A is the molar volume of the solute the molar volume $\left(\frac{cm^3}{mol}\right)$ of the solute as a LIQUID at its boiling point
- What if the solute is a solid that would decompose before reaching a melting point? Schroeder's Method

$$V_A = \left(N_C + N_H + N_O + N_N + N_{dbl} - N_{ring}\right) * 7 \frac{cm^3}{mol}$$

- Where:
 - N_C is the number of carbon atoms
 - N_H is the number of hydrogen atoms
 - N₀ is the number of oxygen atoms
 - N_N is the number of nitrogen atoms
 - *N_{dbl}* is the number of double bonds
 - N_{ring} is the number of separate ring structures (fused rings count as 1)
- If you have data, always use data! Otherwise use the Schroeder method

Diffusion Coefficients - Diffusion in Vapor Phase

• Chapman-Enskog (kinetic theory of gases) eq 17.28

$$D_{AB} = \frac{0.001858 T^{3/2} [(M_A + M_B) / M_A M_B]^{1/2}}{P \sigma_{AB}^2 \Omega_D}$$

- D_{AB} is in $\frac{cm^2}{s}$
- T is temperature in Kelvin
- M_A is the molecular weight of solute A
- M_B is the molecular weight of solvent B
- **P** is pressure in atmospheres

• $\epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$

- Lennard-Jones parameters, Appendix 19, on pp 1111-1112 of McSH 7th Edition
 - $\sigma_{AB} = \frac{1}{2}(\sigma_A + \sigma_B)$ This is effective collision diameter in Å

This is a force constant, tabulated as $\frac{\epsilon}{K_B}$, with units of **K** (Kelvin)

9

2 (0,10.

			Collision integral Ω_D			and the second second second		
Lennard-Jones force constants		er xianaas	$\frac{kT}{\varepsilon_{12}}$	Ωp	$\frac{kT}{\varepsilon_{12}}$	Ωρ	$\frac{kT}{\epsilon_{12}}$	Ω _D
Compound	$\varepsilon/k(\mathbf{K})$	σ (Å)	0.30	2.662	1.65	1.153	4.0	0.8836
	500.0	1 (00	0.35	2.476	1.70	1.140	* 4.1	0.8788
cetone	560.2	4.600	0.40	2.318	1.75	1.128	4.2	0.8740
cetylene	231.8	4.033	0.45	2.184	1.80	1.116	4.3	0.8694
ļir .	78.6	3.711	0.50	2.066	1.85	1.105	4.4	0.8652
Ammonia 558.3		2.900	0.55	1.966	1.90	1.094	4.5	0.8610
rgon	93.3	3.542	0.60	1.877	1.95	1.084	4.6	0.8568
enzene	412.3	5.349	0.65	1.798	2.00	1.075	4.7 '	0.8530
romine	507.9	4.296	0.70	1.729	2.1	1.057	4.8	0.8492
-butane	310	5.339	0.75	1.667	2.2	1.041	4.9	0.8456
butane	313	5.341	0.80	1.612	2.3	1.026	5.0	0.8422
arbon dioxide	195.2	3.941	0.85	1.562	2.4	1.012	6	0.8124
arbon disulfide	467	4.483	0.90	1.517	2.5	0.9996	7	0.7896
arbon monoxide	91.7	3.690	0.95	1.476	2.6	0.9878	8	0.7712
arbon tetrachloride	322.7	5.947	1.00	1.439	2.7	0.9770	9	0.7556
arbonyl sulfide	336	4.130	1.05	1,406	2.8	0.9672	10	0.7424
hlorine	316	4.217	1.10	1.375	2.9	0.9576	20	0.6640
hloroform	340.2	5.389	1.15	1.346	3.0	0.9490	30	0.6232
yanogen	348.6	4.361	1.20	1.320	3.1	0.9406	40	0.5960
yclohexane	297.1	6.182	1.25	1.296	3.2	0,9328	50	0.5756
	248.9	4.807	1.30	1.273	3.3	0.9256	60	0.5596
yclopropane			1.35	1.253	3.4	0.9186	70	0.5464
thane •	215.7	4.443	1.40	1.233	3.5	0.9120	80	0.9352
thanol	362.6	4.530	1.45	1.215	3.6	0.9058	90	0.5256
thylene	224.7	4.163	1.50	1.198	3.7	0.8998	100	0.5130
luorine	112.6	3.357	1.55	1.182	3.8	0.8942	200	0.4644
lelium	10.22	2.551	1.60	1.167	3.9	0.8888	400	0.4170
Hexane	339.3	5.949	010100				and the second second	Sector and
lydrogen	59.7	2.827						
lydrogen cyanide	569.1	3.630						
lydrogen chloride	344.7	3,339						
lydrogen iodide	288.7	4.211						
lydrogen sulfide	301.1	3.623						

Diffusion Coefficients - Diffusion in Vapor Phase

• Chapman-Enskog (kinetic theory of gases) eq 17.28

$$D_{AB} = \frac{0.001858 T^{3/2} [(M_A + M_B) / (M_A M_B)]^{1/2}}{P \sigma_{AB}^2 \Omega_D}$$

- Collision Integral $\Omega_D = f({}^{K_B T}/\epsilon_{AB})$ where K_B is Boltzmann's Constant
 - This function is tabulated on pp 1111 (Appendix 19)
- Diffusivity depends on temperature as $T^{3/2}$, BUT Ω_D also depends on temperature
- Typically, $D_{AB} \propto T^{1.75}$ and depends on pressure as P^{-1}
- If you have D_{AB} at one temperature and pressure for a pair of components, you can estimate at your temperature and pressure using $T^{1.75}$ and P^{-1}
- Correlations are a good resort if you do not have data, but USE EXPERIMENTAL DATA IF YOU HAVE IT

Solute Flux

McSH pp 528-535

- 1D flow one dimensional in that the flux is independent of the y and z axes
- Eq 17.3a N_A = u_Ac_A Flux of A Eq 17.3b N_B = u_Bc_B Flux of B
 $\frac{mole}{area * time}$ of A passing through "window"
 $\frac{mole}{area * time}$ of B passing through "window"
- u_i is the average speed of component i molecules
- c_i is the concentration of component i

 $N_i = u_i c_i$

Solute Flux

Side view of the slab, consider a time increment Δt

- An A molecule will travel the distance $u_A \Delta t$
- Any molecules further to the left of the plane we are considering by a distance greater than $u_A \Delta t$ will NOT cross the plane
- Any molecule that is within a distance of $u_A \Delta t$ WILL cross the plane in the time period Δt
- This defines a volume of $u_A \Delta t A$ that contains all of the molecules that will cross the plane. (A is the cross-sectional area of the control volume.)
- The number of molecules within that volume is $u_A \Delta t A c_A$

•
$$c_A$$
 is $\frac{moles}{volume}$

• This is the number of moles that will cross the plane during time Δt

•
$$N_A = \frac{moles}{area*time}$$
 crossing the plane

•
$$N_A = \frac{u_A \Delta t \, A \, c_A}{A \, \Delta t} = u_A c_A$$
 eq 17.3a

University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Diffusion

• When we talk about diffusion, we are talking about the motion of a component relative to the mixture that it is in.

Mixture Flowing through a pipe

- We could measure the number of molecules of A passing a plane/(area*time)
- That is NOT diffusive flux
- Much of that flow of component A is from motion due to the flow of the mixture
- We want to determine motion of A relative to the motion of the mixture

Diffusion refers to the motion of a constituent in a mixture relative to the volume average velocity of the mixture

Diffusive Flux

- If molar density $\left(\frac{total moles}{volume}\right)$ is constant (or nearly constant) then the mole average velocity and volume average velocity are the same
- A derivation based on mole average velocity is more straightforward
- The results are the same for mole average as they are for volume average
- $\overline{U} = x_A u_A + x_B u_B$ this is mole average velocity (U_o in textbook)

Flux relative to average motion of mixture is Diffusive Flux

$$J_{A} = (u_{A} - \overline{U})c_{A} \frac{moles}{area*time}$$
$$J_{B} = (u_{B} - \overline{U})c_{B} \frac{moles}{area*time}$$

- *J* is the symbol for diffusive flux
- $J_A + J_B = u_A c_A + u_B c_B \overline{U}(c_A + c_B)$ = $u_A x_A c + u_B x_B c - \overline{U} c = (u_A x_A + u_B x_B) c - \overline{U} c$ = $\overline{U} c - \overline{U} c = 0$
- The motion of (A+B) relative to the average velocity of the mixture is zero which makes sense

 $\frac{total\ moles}{volume} = constant$

15

 $c_A + c_B = x_A c + x_B c = (x_A + x_B)c = c$

Flux

$$N_A = u_A c_A = \overline{U} c_A + u_A c_A - \overline{U} c_A$$

Overall flux of A eq 17.3a we just added and subtracted $\overline{U}c_A$

 $N_A = \overline{U}c_A + (u_A - \overline{U})c_A$

$$N_{A} = \overline{U}c_{A} + J_{A} = \overline{U}c_{A} - D_{AB}\frac{dc_{A}}{dx}$$
convective flux Diffusive flux definition Fick's Law

• Convective flux is the flux due to the overall flow of liquid as a whole

• **D**_{AB} is the diffusion coefficient of A diffusing through B

-0

Flux

$$N_A = \overline{U}c_A - D_{AB}rac{dc_A}{dx}$$
 $N_B = \overline{U}c_B - D_{BA}rac{dc_B}{dx}$

- Note that diffusivity in second equation is D_{BA} , for B diffusing through A
- Textbook uses "b" as the direction, not "x"
- One might be interested in either flow
- $N = N_A + N_B = u_A c_A + u_B c_B$ "the flux of everything"

$$= u_A x_A c + u_B x_B c$$
$$= (u_A x_A + u_B x_B) c$$
$$= \overline{U} c$$

Flux

$$N_A = \overline{U}c_A - D_{AB}\frac{dc_A}{dx}$$

$$= \overline{U}c x_A - D_{AB} \frac{d(c x_A)}{dx}$$

From previous slide $N = N_A + N_B = \overline{U}c$

c can be taken out of derivative because it is constant

Note that x_A is a mole fraction while x in the denominator is just the x axis, a direction

$$N_A = (N_A + N_B)x_A - D_{AB} c \frac{dx_A}{dx}$$

• Similar steps for B lead to

$$N_A = (N_A + N_B)x_A - D_{AB} c \frac{dx_A}{dx}$$
$$N_B = (N_A + N_B)x_B - D_{BA} c \frac{dx_B}{dx}$$

Reciprocal Relation of D_{AB} and D_{BA} $J_A = -D_{AB} \frac{dc_A}{dx}$ $J_B = -D_{BA} \frac{dc_B}{dx}$

- We know that $J_A + J_B = 0$ therefore $J_A = -J_B$
- Also $c_A + c_B = c = constant$

$$\frac{dc_A}{dx} + \frac{dc_B}{dx} = \frac{dc}{dx} = 0$$
$$\frac{dc_A}{dx} = -\frac{dc_B}{dx}$$

Reciprocal Relation of D_{AB} and D_{BA}

$$\frac{dc_A}{dx} = -\frac{dc_B}{dx}$$
 and $J_A = -J_B$

$$J_B = -D_{BA} \frac{dc_B}{dx}$$

• Making substitutions

$$J_B = -J_A = -D_{BA} \left(-\frac{dc_A}{dx} \right) \qquad \text{substitute } \frac{dc_A}{dx} = -\frac{dc_B}{dx}$$

$$J_A = -D_{BA}\left(\frac{dc_A}{dx}\right)$$
 drop a negative sign on each side

 $J_A = -D_{AB}\left(\frac{dc_A}{dx}\right)$

• But, by definition

• Therefore:

$$D_{BA} = D_{AB}$$

