CE407 SEPARATIONS

Lecture 17

Instructor: Miao Yu

- University at Buffalo

Department of Chemical
and Biological Engineering
School of Engineering and Applied Sciences

E五 University at Buffalo

No. of ideal stages
(1) Locate given points $L_{0}, V_{N+1}, L_{N}^{\prime}$
(2) Find M, L_{N}
(3) Find V_{1}
(4) Find Δ
(1) Find points on up
(6) plot $E Q, O P$

(7) No. of stages

G五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Multi-Stage Countercurrent Extraction Treybal pp. 452 Fig 1040

Minimum Entering Solvent Flow

- So far we have started with a given solvent flow, now we will see how to determine a reasonable flow
- Point \#1
- Revisit the diagram for locating mixing point, M
- As the amount of solvent DECREASES
- "M" moves toward L_{0}
- V_{1} moves to the left

- Δ will move to the right
- The line $\overline{\boldsymbol{V}_{\mathbf{1}} \boldsymbol{L}_{\mathbf{0}}}$ becomes steeper

Minimum Entering Solvent Flow

－Point \＃2：Review Hunter－Nash method
－The \＃of steps are determined by alternating between：
－Using Δ lines to do mass balances
－Using tie lines to establish EQ relationships
－When the slopes of the Δ lines and tie lines are very different we make a lot of progress with each step
－Similar to when OP lines and EQ curve are far
 apart
－When the slope of a Δ line is the same as the slope of a tie line we stop making progress
－This is a pinch point
－The infinite number of steps corresponds to minimum solvent flow

Minimum Entering Solvent Flow

－If we extend all of the relevant tie lines we see which leads to the furthest Δ location
－Relevant tie lines are the those located between the tie line that passes through L_{0} and the one that passes through L_{N}
－The Δ location furthest left corresponds to the largest flow that leads to a pinch point－this is the Minimum Solvent Flow
－Note that all smaller flows will have a pinch point，we are looking for one where you reach the point where there are no more pinch points
－When Δ lies to left of triangle it is furthest out，when Δ lies to right of triangle it is closest
－If the tie lines all have similar slopes this will be the tie line that crosses at L_{0}（Fig a）
－If the slopes vary，it could be a different tie line（Fig b）

五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Minimum Entering Solvent Flow

- Label Leftmost intersection as $\Delta_{\text {min }}$
- Notice the tie lines that are out of range are not used

Minimum Entering Solvent Flow

- Now draw a line from $\Delta_{\text {min }}$ to L_{0} and extend it to right hand side of phase boundary
- This determines $\mathrm{V}_{1, \text { min }}$
- Note that this line is NOT necessarily a tie line
- Draw in $\overline{L_{N} V_{1, \text { min }}}$ and $\overline{L_{0} V_{N+1}}$, their intersection determines M
- $\frac{\left(V_{N+1}\right)_{\min }}{L_{0}}=\frac{x_{0}-x_{M}}{x_{M}-y_{N+1}}$ this gives the ratio of minimum solvent flow to feed flow

7

G五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

What Flow Should We Use?

- Same optimization as we did for other Unit Operations...
- Annual Cost = Depreciation + Solvent Cost

- Once again it turns out that it typically reaches a minimum at

$$
\left(V_{N+1}\right)_{\text {opt }}=1 \cdot 3\left(V_{N+1}\right)_{\min }
$$

E3 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Batch Operation of a Stage

Think in terms of "before" and "after" the mixing and settling

- Charge Feed and Solvent to Vessel
- Mix thoroughly - need proper hold time
- Stop agitation and let phase settle
- Aqueous phase is more dense and will be on bottom
- Drain material from bottom of vessel
- First material is aqueous phase
- Switch to another receiver when organic phase starts to come out

Continuous Operation

Mixer-settlers

Mixer No. $1 \quad$ Mixer No. $2 \quad$ Mixer No. 3

FIGURE 23.4

Think in terms of "flow in" and "flow out" each mixing and settling stage

- Continuous flow of Feed and Solvent to Mixing Vessel
- Mix thoroughly - need proper residence time
- Mixture is continuously flowing to settler
- The two phases separate in settler and exit as two streams

FIGURE 23.4

- Ellipse represents Stage 1
- L_{0} is Feed into Stage 1
- V_{2} is extract from Stage 2 feeding into Stage 1
- L_{1} is raffinate flow leaving Stage 1
- V_{1} is extract flow leaving Stage 1
- V_{4} is solvent flow entering Stage 3 , ie $\mathrm{V}_{\mathrm{N}+1}$
- L_{3} is final raffinate flow exiting Stage 3 , ie L_{N}

Very similar to the trays we have discussed in a Distillation Column

- Density difference is orders of magnitude lower than in a rectifying gas/liquid column (sp gr of 1 for aqueous and around 0.7 for organic)
- Both phases will be relatively high viscosity as opposed to the low viscosity vapor phase in distillation (velocities will be lower than in distillation column)
- Aqueous phase is more dense and will travel downward, organic phase will travel upward
- This means to location of the extract leaving the column depends on whether the extract is the aqueous phase or whether it is the organic phase

๘お University at Buffalo

五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences
3. A $500 \mathrm{~kg} / \mathrm{h}$ feed stream with composition 45 mass $\%$ acetone (solute, C) and 55 mass $\%$ water (diluent, A) is to be contacted with trichloroethane (solvent, B) in a countercurrent liquid extraction battery. Entering trichloroethane is pure. The exiting raffinate should contain 20.2 mass $\%$ acetone on a trichloroethane-free basis. Our very good friend Elroy poses the following two questions:
(a) What is the minimum flow rate of trichloroethane required to achieve the desired composition of the exiting raffinate (corresponding to an infinite number of stages)?

$$
\begin{aligned}
& \frac{\left(v_{N+1}\right)_{\text {mir }}}{L_{0}}=\frac{x_{0}-x_{n}}{x_{n}-y_{N+1}} \not \square \\
& =\frac{0,45-0,38}{0,38-0}=0,194 \\
& L_{0}=500 \\
& \left(V_{N+1}\right)_{\min }=96 / \mathrm{kg} / \mathrm{h} \\
& V_{\text {Ht }}=1,3 \times\left(V_{N+1}\right)_{\text {min }} \\
& =125
\end{aligned}
$$

5. A $450 \mathrm{~kg} / \mathrm{h}$ feed stream with composition 38 mass $\%$ acetone (solute, C) and 62 mass $\%$ water (diluent, A) is to be contacted countercurrently with an MIK(solvent B)-rich solution of which the precise composition is 90 mass \% MIK, 9 mass \% acetone and the balance water. The exiting raffinate should contain 16.5 mass $\%$ acetone (C) and 83.5 mass $\%$ water (A) on an MIK(B)-free basis.
(a) What is the minimum flow rate $\left(V_{N+1}\right)_{\text {min }}$ of the entering MIK-rich solvent stream required to achieve the desired separation (corresponding to an infinite number of stages)?

T T University at Buffalo
Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

