CE407 SEPARATIONS

Lecture 11 Example Problems

Instructor: David Courtemanche
| Universityat Buffalo
Department of Chemical
and Biological Engineering
School of Engineering and Applied Sciences

G五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Example Problem

- We need to perform a separation on this stream:

Component, \boldsymbol{i}	Mole Fraction in Feed, \mathbf{x}_{fi}	Relative Volatility, $\boldsymbol{\alpha}_{\mathrm{i}}=\boldsymbol{\alpha}_{\mathrm{i}, \mathrm{HK}}$
1	0.08	3.09
$2(\mathrm{LK})$	0.40	1.95
3	0.10	1.25
$4(\mathrm{HK})$	0.39	1.00
5	0.03	0.52

- We require a 99\% recovery of the Light Key in the distillate and 99\% recovery of the Heavy Key in the bottoms
- What will be the split of Component 3 between the Distillate and the Bottoms?
- How good is the assumption that the LLK and HHK components are not distributed? ment of Chemical and Biological Engineering
School of Engineering and Applied Sciences

100 mole basis

1: 8 moles
2: $0.99 * 40=39.6$ moles (LK)
3: δ moles
4: $39-38.61=0.39$ moles (HK)
5: 0 moles

1: 0 moles
2: 40-39.6 = 0.40 moles (LK)
3: $10-\delta$ moles
4: 0.99 * $39=38.61$ moles (HK)
5: 3 moles

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Use Fenske Equation to solve for $\mathbf{N}_{\text {min }}$ and δ

- Calculate $\mathrm{N}_{\text {min }}+1$ for LK/HK
- $i=2, j=4$

$$
N_{\text {min }}+1=\frac{\ln \left[\frac{D x_{i D} / B x_{i B}}{D x_{j D} D / B x_{j B}}\right]}{\ln \overline{\alpha_{i j}}}=\frac{\ln \left[\frac{39.6 / 0.40}{0.39 / 38.61}\right]}{\ln 1.95}=13.76
$$

- Perform Fenske for $\mathrm{i}=3$ and $\mathrm{j}=4$

$$
N_{\min }+1=\frac{\ln \left[\frac{D x_{i D} / B x_{i B}}{D x_{j j} / B x_{j B}}\right]}{\ln \overline{\alpha_{i j}}}=\frac{\ln \left[\frac{\delta /(10-\delta)}{0.39 / 38.61}\right]}{\ln 1.25}=13.76
$$

- Rearrange

$$
13.76 * \ln (1.25)=\ln \left[\frac{\delta /(10-\delta)}{0.39 / 38.61}\right]=3.0705
$$

- Take exponential

$$
e^{3.0705}=\frac{\delta /(10-\delta)}{0.39 / 38.61}=21.5517
$$

Distributed component, solve for δ

$$
\begin{gathered}
\frac{\delta /(10-\delta)}{0.39 / 38.61}=21.5517 \\
\delta /(10-\delta)=21.5517 * 0.39 / 38.61=0.2177 \\
\delta=0.2177 *(10-\delta) \\
1.2177 \delta=2.177
\end{gathered}
$$

$\boldsymbol{\delta}=\mathbf{1} .79$ is the number of moles of component 3 in the distillate

世五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Use Fenske Equation to Check Assumption that Component 1 Does Not Appear Appreciably in the Bottoms Stream

- Note that the calculation of $N_{\text {min }}$ did not depend on anything except number of moles of components 2 and 4
- Assumptions about LLK and HHK components did not affect that calculation
- Now we will assign $\boldsymbol{\delta}$ as the number of moles of component 1 in the distillate and $\mathbf{8 - \delta}$ as the number in the bottoms. The relative volatility, $\alpha_{i j}$, of component 1 to the HK is 3.09
- Perform Fenske for $\mathrm{i}=1$ and $\mathrm{j}=4$

$$
N_{\text {min }}+1=\frac{\ln \left[\frac{D x_{i D} / B x_{i B}}{D x_{j D} / B x_{j B}}\right]}{\ln \overline{\alpha_{i j}}}=\frac{\ln \left[\frac{\delta /(8-\delta)}{0.39 / 38.61}\right]}{\ln 3.09}=13.76
$$

- Rearrange

$$
13.76 * \ln (3.09)=\ln \left[\frac{\delta /(8-\delta)}{0.39 / 38.61}\right]=15.523634
$$

- Take exponential

$$
e^{15.5236}=\frac{\delta /(8-\delta)}{0.39 / 38.61}=5.518597 * 10^{6}
$$

Use Fenske Equation to Check Assumption that Component 1 Does Not Appear Appreciably in the Bottoms Stream

$$
\begin{gathered}
\frac{\delta /(8-\delta)}{0.39 / 38.61}=5.518597 * 10^{6} \\
\delta /(8-\delta)=5.518597 * 10^{6} * 0.39 / 38.61=55,743.40 \\
\delta=55,743.40 *(8-\delta) \\
55,744.40 \delta=445,947.23
\end{gathered}
$$

$\boldsymbol{\delta}=\mathbf{8 . 0 0 0 0 0 0 0 0}$ is the number of moles of component 1 in the distillate
$\mathbf{8 - \delta}<\mathbf{1 0}^{\mathbf{- 8}}$ is the number of moles of component 1 in the bottoms School of Engineering and Applied Sciences

Example Problem 2 - Required Stages

2. A four-component mixture (see table below) is to be distilled with 97.5 percent recovery of the light and heavy keys in the distillate and bottoms. Estimate the number of ideal stages required at a reflux ratio equal to 1.3 times the minimum.

component	mole fraction in feed $\left(x_{F}\right)_{i}$	relative volatility (with respect to HK) $\alpha_{i}=\alpha_{i, H K}$
i	0.08	3.09
1	0.50	1.95
$2(L K)$	1.00	
$3(H K)$	0.39	0.52
4	0.03	

The mixture enters the distillation column as saturated liquid. anical and Biological Engineering School of Engineering and Applied Sciences

Example Problem 2 - Required Stages

100 mole basis

1: 8 moles
2: $0.975 * 50=48.750$ moles (LK)
3: $39-38.025=0.975$ moles (HK)
4: 0 moles
D = 57.725 moles

1: 0 moles
2: $50-48.750=1.250$ moles (LK)
3: 0.975 * $39=38.025$ moles (HK)
4: 3 moles
B $=\mathbf{4 2 . 2 7 5}$ moles

耳五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Use Fenske to Calculate $\mathbf{N}_{\text {min }}$

- Calculate $\mathrm{N}_{\text {min }}+1$ for LK/HK
- $i=2, j=3$

$$
\begin{gathered}
N_{\min }+1=\frac{\ln \left[\frac{D x_{i D} / B x_{i B}}{D x_{j D} / B x_{j B}}\right]}{\ln \overline{\alpha_{i j}}}=\frac{\ln \left[\frac{48.750 / 1.250}{0.975 / 38.025}\right]}{\ln 1.95}=11.0 \\
N_{\min }=10.0
\end{gathered}
$$

世五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Minimum Reflux Ratio－Underwood＇s Method

－Eq $22.29 \quad 1-\boldsymbol{q}=\sum_{i}{ }_{i} \alpha_{i} x_{i} i_{i, F} \quad$ sum i is over ALL components
－Because feed is a saturated liquid， $\boldsymbol{q}=1$

$$
\mathbf{1}-\boldsymbol{q}=1-1=\mathbf{0}=\sum_{i} \frac{\alpha_{i} x_{i, F}}{\alpha_{i}-\varphi}
$$

－Solve using GoalSeek in Excel
－（or however you prefer．．．）

世五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

Minimum Reflux Ratio－Underwood＇s Method

－Eq $22.30 \quad \boldsymbol{R}_{\min }+\mathbf{1}=\sum_{i} \frac{\alpha_{i} x_{i, D}}{\alpha_{i}-\varphi} \quad$ sum i is over only components in distillate
－Solving for $\boldsymbol{R}_{\text {min }}$ is straightforward，no iteration required

C五 Department of Chemical and Biological Engineering
school of Engineering and Applied Sciences

Required Number of stages for a Given Value of R

－Gilliland Correlation
－From problem Statement：$R=1.3 * R_{\min }=1.3 * 1.543=2.006$

$$
\frac{R-R_{\min }}{R+1}=\frac{2.006-1.543}{2.006+1}=0.15
$$

－Read $\frac{N^{\prime}-N^{\prime}{ }_{\text {min }}}{N^{\prime}+1}$ off of the graph

$$
\frac{N^{\prime}-N^{\prime} \min ^{2}}{N^{\prime}+1}=0.48
$$

－\quad Solve for N^{\prime}

$$
\begin{gathered}
N_{\min }=10.0(\text { From Fenske, see slide 10) } \\
N_{\min }^{\prime}=N_{\min }+1=11.0 \\
\frac{N^{\prime}-11.0}{N^{\prime}+1}=0.48 \\
N^{\prime}=22.1
\end{gathered}
$$

－$\quad N=N^{\prime}-1$
Report as 21.1 stages＋Reboiler－would round up to 22 stages＋Reboiler

