CE407 SEPARATIONS

Lecture 10

Instructor: David Courtemanche

\author{

- - University at Buffalo
 Department of Chemical
 and Biological Engineering
 school of fegnineeing and Applied s siences
}

世衁 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Binary Batch Distillation McSH pp 724－727

－Batch distillation is much simpler in terms of equipment，but the analysis is actually more involved．．．
－Define terms
－ $\mathrm{A}=$ light component
－$B=$ heavy component
－ $\mathbf{n}=$ total number of moles of liquid in the still pot
－$n_{A}=$ number of moles of liquid A in the still pot
－$x=$ mole fraction of component A in the still pot（liquid）
－$y=$ mole fraction of component A in the vapor coming off of the still pot

Binary Batch Distillation

- $\quad \mathbf{x}$ and \mathbf{y} values at any given time will be in equilibrium with one another
- A , being the lighter component, has a higher mole fraction in the vapor phase than it does in the liquid phase
- As a result, component A is being depleted from the liquid and x will drop with time
- Unfortunately that means the mole fraction, \mathbf{y}, of the vapor being generated is also dropping

- What is the rate of change of number of moles of A in the still pot?
- First express the number of moles of A in the still pot as:

$$
\boldsymbol{n}_{\boldsymbol{A}}=\boldsymbol{x} \boldsymbol{n}
$$

(\# moles $\mathrm{A}=$ mole fraction A * total number of moles)

Binary Batch Distillation

- $\quad d n_{A}=d(x n)=n d x+x d n$
when expressed in terms of liquid mole fraction
- $d n_{A}$ is rate of change of moles of A in the still pot, the rate that moles of A are leaving when expressed in terms of liquid mole fraction
- $d x$ is rate of change of liquid mole fraction
- $d n$ is rate of change of total moles in still pot
- $d n_{A}=y d n \quad$ when expressed in terms of vapor mole fraction
- Note: the total moles leaving (dn) have a mole fraction \mathbf{y} so we can express simply as $\boldsymbol{y} d \boldsymbol{d}$. The total moles leaving DO NOT have a mole fraction of \mathbf{x} and therefore that expression is more complex.
- Obviously both expressions must equal one another

$$
\begin{gathered}
n d x+x d n=y d n \\
n d x=(y-x) d n \\
\frac{d x}{y-x}=\frac{d n}{n}
\end{gathered}
$$

Binary Batch Distillation

$$
\frac{d x}{y-x}=\frac{d n}{n}
$$

－Integrate from time $\boldsymbol{t}_{\mathbf{0}}$ where $\boldsymbol{x}=\boldsymbol{x}_{\mathbf{0}}$ and $\boldsymbol{n}=\boldsymbol{n}_{\mathbf{0}}$ to an arbitrary time where $\boldsymbol{x}=\boldsymbol{x}$ and $\boldsymbol{n}=\boldsymbol{n}$
－To avoid mathematical confusion between the values x and n at the arbitrary time and the variables x and n as we integrate we will express the variables as \boldsymbol{x}^{\prime} and \boldsymbol{n}^{\prime}
－Express vapor mole fraction as $y=y\left(x^{\prime}\right)$ to explicitly indicate that the instantaneous value of \boldsymbol{y} must be in equilibrium with the instantaneous value of x^{\prime}
－ $\int_{n_{0}}^{n} \frac{d n^{\prime}}{n^{\prime}}=\ln \left(\frac{n}{n_{0}}\right)=\int_{x_{0}}^{x} \frac{d x^{\prime}}{y\left(x^{\prime}\right)-x^{\prime}}$ eq 21.86

Rayleigh Equation

Rayleigh Equation

－The Rayleigh Equation gives the relationship between the total moles left in the still pot and the mole fraction of component A of the material left in the still pot

$$
\ln \left(\frac{n}{n_{0}}\right)=\int_{x_{0}}^{x} \frac{d x^{\prime}}{y\left(x^{\prime}\right)-x^{\prime}}
$$

－We need to interpret the integral on the right hand side of this equation
－For various values of x^{\prime} from x to x_{0} read off $y\left(x^{\prime}\right)$ and calculate $\frac{1}{y\left(x^{\prime}\right)-x^{\prime}}$
－We can now approximate the integral

Use Trapezoid Rule

- $\int_{a}^{b} f(x) d x \cong\left[\frac{1}{2} f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{N-1}\right)+\frac{1}{2} f\left(x_{N}\right)\right] h$
- Where we break the range into N equally spaced slices

- $h=\frac{b-a}{N}$ is the thickness of each slice
- The area of a slice, \mathbf{n}, is approximately $A_{n}=\left(\frac{f\left(x_{n-1}\right)+f\left(x_{n}\right)}{2}\right) \boldsymbol{h}$
- Average height in that range times the width of the range
- Add up the slices $\sum=\left(\frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}\right) h+\left(\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}\right) h+\cdots+\left(\frac{f\left(x_{N-1}\right)+f\left(x_{N}\right)}{2}\right) h$

$$
=\left[\frac{f\left(x_{0}\right)}{2}+f\left(x_{1}\right)+\cdots+f\left(x_{N-1}\right)+\frac{f\left(x_{N}\right)}{2}\right] h
$$

- The greater a number N is, the more accurate the approximation

Binary Batch Distillation

- $\ln \left(\frac{n}{n_{0}}\right)=\int_{x_{0}}^{x} \frac{d x^{\prime}}{y\left(x^{\prime}\right)-x^{\prime}}$
- Notice that our integral goes from x_{0} to x and $x_{0}>x$. Therefore our integral has a negative value.
- This makes sense because $\frac{n}{n_{0}}<\mathbf{1}$ and therefore $\ln \left(\frac{n}{n_{0}}\right)$ will be a negative number
- Our trapezoidal sum represents the absolute value of the integral, be sure to change the sign
- Method:
- Pick a value of x and use trapezoidal approximation to estimate $\int_{x_{0}}^{x} \frac{d x^{\prime}}{y\left(x^{\prime}\right)-x^{\prime}}$
- Calculate n using $\ln \left(\frac{n}{n_{0}}\right)=\int_{x_{0}}^{x} \frac{d x^{\prime}}{y\left(x^{\prime}\right)-x^{\prime}}$

- We now have the connection between \# moles left in still pot and the mole fraction of the liquid left in the pot
- Please see Binary Batch Distillation Examples in Notes for discussion of how we go from this knowledge of x vs n to an understanding of volume remaining and cumulative mole fraction of distillate

世五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Batch Distillation with Reflux

- Improve separation by adding rectifying stages and reflux
- Improves purity of distilled product but not of the bottoms (material left in still pot)
- \mathbf{y} refers to mole fraction above the \mathbf{N} stages and is equal to \mathbf{x}_{D}, composition of condensed material leaving the still
- x refers to the mole fraction of liquid remaining in still pot and can be referred to as $\mathbf{x}_{\mathbf{B}}$

Batch Distillation with Reflux

- Analyzing a still with a set number of stages
- Pick a value of \mathbf{x}_{D} and determine the value of \mathbf{x}_{B}
- Draw rectifying line with slope $=R /(R+1)$
- In this example with 2 stages a third step is drawn in
- This represents the step in the still pot itself (equivalent to the reboiler)

x
- This allows you to determine what \mathbf{x}_{B} will correspond to that value of X_{D}
- Choose multiple values of \mathbf{x}_{D} and get $\mathbf{x}_{\mathbf{B}}$ for each
- Make a table of \mathbf{x}_{B} VS \mathbf{x}_{D}
- Do the same steps w/Rayleigh equation, etc

Batch Distillation with Reflux

Constant Reflux Rate

- \mathbf{x}_{D} will change with time
- Draw multiple operating lines
- All have same slope of $R /(R+1)$
- Step off \# of steps corresponding to \# of stages +1 for still pot
- Read off \mathbf{x}_{B}
- Generate table of \mathbf{x}_{D} vs X_{B}

Batch Distillation with Reflux

Variable Reflux Rate

- \mathbf{x}_{D} will be constant with time
- Draw various operating lines all originating from ($\mathbf{x}_{\mathrm{D}}, \mathbf{x}_{\mathrm{D}}$) each having a different slope
- Value of R for each line can be obtained from intercept $=\frac{x_{D}}{R+1}$
- Walk off the appropriate \# of steps (= \# stages+1) for each line to determine what $\mathbf{x}_{\mathbf{B}}$ will corresponds to that reflux ratio

- Plot \mathbf{R} vs \mathbf{x}_{B} to show what \mathbf{R} will be required for each \mathbf{x}_{B} in order to maintain the desired \mathbf{x}_{D}

