CE407 SEPARATIONS

Lecture 10

Instructor: David Courtemanche

University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Binary Batch Distillation McSH pp 724-727

- Batch distillation is much simpler in terms of equipment, but the analysis is actually more involved...
- Define terms
 - A = light component
 - B = heavy component
 - **n** = total number of moles of liquid in the still pot
 - n_A = number of moles of liquid A in the still pot
 - x = mole fraction of component A in the still pot (liquid)
 - y = mole fraction of component A in the vapor coming off of the still pot

- **x** and **y** values at any given time will be in equilibrium with one another
- A, being the lighter component, has a higher mole fraction in the vapor phase than it does in the liquid phase
- As a result, component A is being depleted from the liquid and **x** will drop with time
 - Unfortunately that means the mole fraction, **y**, of the vapor being generated is also dropping
- What is the rate of change of number of moles of A in the still pot?
- First express the number of moles of A in the still pot as:

 $n_A = x n$

(# moles A = mole fraction A * total number of moles)

- $dn_A = d(xn) = n \, dx + x \, dn$ when expressed in terms of liquid mole fraction
 - *dn_A* is rate of change of moles of A *in the still pot*, the rate that moles of A are leaving when expressed in terms of liquid mole fraction
 - *dx* is rate of change of liquid mole fraction
 - *dn* is rate of change of total moles *in still pot*
- $dn_A = y \, dn$ when expressed in terms of vapor mole fraction
- Note: the total moles leaving (*dn*) have a mole fraction y so we can express simply as y dn. The total
 moles leaving DO NOT have a mole fraction of x and therefore that expression is more complex.
- Obviously both expressions must equal one another

n dx + x dn = y dn

$$n\,dx=(y-x)\,dn$$

$$\frac{dx}{y-x} = \frac{dn}{n}$$

 $\frac{dx}{y-x}=\frac{dn}{n}$

- Integrate from time t_0 where $x = x_0$ and $n = n_0$ to an arbitrary time where x = x and n = n
- To avoid mathematical confusion between the values *x* and *n* at the arbitrary time and the variables *x* and *n* as we integrate we will express the variables as *x*' and *n*'
- Express vapor mole fraction as y = y(x') to explicitly indicate that the instantaneous value of y must be in equilibrium with the instantaneous value of x'

•
$$\int_{n_0}^{n} \frac{dn'}{n'} = \ln\left(\frac{n}{n_0}\right) = \int_{x_0}^{x} \frac{dx'}{y(x') - x'}$$
Rayleigh Equation

eq 21.86

Rayleigh Equation

• The Rayleigh Equation gives the relationship between the total moles left in the still pot and the mole fraction of component A of the material left in the still pot

$$ln\left(\frac{n}{n_0}\right) = \int_{x_0}^x \frac{dx'}{y(x') - x'}$$

- We need to interpret the integral on the right hand side of this equation
 - For various values of x' from x to x_0 read off y(x') and calculate $\frac{1}{y(x') x'}$
- We can now approximate the integral

Use Trapezoid Rule

•
$$\int_{a}^{b} f(x) dx \cong \left[\frac{1}{2} f(x_{0}) + f(x_{1}) + \dots + f(x_{N-1}) + \frac{1}{2} f(x_{N}) \right] h$$

- $h = \frac{b-a}{N}$ is the thickness of each slice
- The area of a slice, **n**, is approximately $A_n = \left(\frac{f(x_{n-1}) + f(x_n)}{2}\right)h$
 - Average height in that range times the width of the range

• Add up the slices
$$\sum = \left(\frac{f(x_0) + f(x_1)}{2}\right)h + \left(\frac{f(x_1) + f(x_2)}{2}\right)h + \dots + \left(\frac{f(x_{N-1}) + f(x_N)}{2}\right)h$$
$$= \left[\frac{f(x_0)}{2} + f(x_1) + \dots + f(x_{N-1}) + \frac{f(x_N)}{2}\right]h$$

• The greater a number N is, the more accurate the approximation

- $ln\left(\frac{n}{n_0}\right) = \int_{x_0}^x \frac{dx'}{y(x') x'}$
- Notice that our integral goes from x_0 to x and $x_0 > x$. Therefore our integral has a negative value.
- This makes sense because $\frac{n}{n_0} < 1$ and therefore $ln(\frac{n}{n_0})$ will be a negative number
- Our trapezoidal sum represents the absolute value of the integral, be sure to change the sign
- Method:
 - Pick a value of x and use trapezoidal approximation to estimate $\int_{x_0}^x \frac{dx'}{v(x') x'}$

• Calculate n using
$$ln\left(\frac{n}{n_0}\right) = \int_{x_0}^x \frac{dx'}{y(x') - x'}$$

- Repeat for various values of x. Create table of x and n
- We now have the connection between # moles left in still pot and the mole fraction of the liquid left in the pot
- Please see Binary Batch Distillation Examples in Notes for discussion of how we go from this knowledge of x vs n to an understanding of volume remaining and cumulative mole fraction of distillate

Х

n

Batch Distillation with Reflux

- Improve separation by adding rectifying stages and reflux
- Improves purity of distilled product but not of the bottoms (material left in still pot)
- y refers to mole fraction above the N stages and is equal to x_D, composition of condensed material leaving the still
- x refers to the mole fraction of liquid remaining in still pot and can be referred to as \mathbf{x}_{B}

Batch Distillation with Reflux

- Analyzing a still with a set number of stages
- Pick a value of $\mathbf{x}_{\mathbf{D}}$ and determine the value of $\mathbf{x}_{\mathbf{B}}$
- Draw rectifying line with slope = R/(R+1)
- In this example with 2 stages a third step is drawn in
 - This represents the step in the still pot itself (equivalent to the reboiler)
 - This allows you to determine what \boldsymbol{x}_B will correspond to that value of \boldsymbol{x}_D
- Choose multiple values of $\mathbf{x}_{\mathbf{D}}$ and get $\mathbf{x}_{\mathbf{B}}$ for each
- Make a table of $\mathbf{x}_{\mathbf{B}}$ vs $\mathbf{x}_{\mathbf{D}}$
- Do the same steps w/Rayleigh equation, etc

Batch Distillation with Reflux Constant Reflux Rate

- **x**_D will change with time
- Draw multiple operating lines
 - All have same slope of R/(R+1)
- Step off # of steps corresponding to # of stages +1 for still pot
- Read off **x_B**
- Generate table of x_D vs x_B

Ko	XB		2 stage column, R= 2.0
0.95	0.63		
0.9	0.33	X	
0.8	0.12	D	
0.7	0.08		1
	0.08		1

Batch Distillation with Reflux Variable Reflux Rate

- **x**_D will be constant with time
- Draw various operating lines all originating from (x_D, x_D) each having a different slope
- Value of R for each line can be obtained from intercept = $\frac{x_D}{R+1}$
- Walk off the appropriate # of steps (= # stages+1) for each line to determine what x_B will corresponds to that reflux ratio
- Plot R vs x_B to show what R will be required for each x_B in order to maintain the desired x_D

12