CE407 SEPARATIONS

Lecture 09

Instructor: David Courtemanche

- University at Buffalo

Department of Chemical
and Biological Engineering
school of fegnineeing and Applied s siences

G五 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Continuous Distillation - Enthalpy Balances

McSH pp 694-701, pp 679, 682 eq 21.1 and 21.2

- How much energy does one need to remove via condenser and add via reboiler?
- Condenser
- Control Volume
around condenser

- Heat added = Enthalpy out - enthalpy in

$$
\begin{aligned}
-q_{c} & =D H_{D}+L_{0} H_{x, 0}-V_{1} H_{y, 1} \\
& =\left(D+L_{0}\right) H_{x, 0}-V_{1} H_{y, 1}
\end{aligned}
$$

- Note: \mathbf{q}_{c} is defined as the amount of heat REMOVED via the condenser and is a positive number. The enthalpy balance is the amount of heat added, therefore the a. term appears as $-q_{c}$ in the equation. The fact that $-q_{c}$ is therefore a negative term is consistent with the fact that we are removing heat to affect a phase change from vapor to liquid

Enthalpy Balances: Condenser, continued

- $-\boldsymbol{q}_{c}=\left(\mathrm{D}+\boldsymbol{L}_{\mathbf{0}}\right) \boldsymbol{H}_{x, \mathbf{0}}-\boldsymbol{V}_{\mathbf{1}} \boldsymbol{H}_{y, \mathbf{1}}$
- But from mass balance we know that $\mathrm{V}_{1}=\mathrm{D}+\mathrm{L}_{0}$
- $-q_{c}=\left(D+L_{0}\right) \boldsymbol{H}_{x, 0}-\left(D+L_{0}\right) H_{y, 1}$
- And from definition of reflux ratio $L_{0}=\mathbf{D}$

$$
-\boldsymbol{q}_{c}=D(\mathbf{1}+\boldsymbol{R})\left(H_{x, 0}-H_{y, 1}\right)
$$

- It's not as simple as just looking at Heats of Vaporization
- You have the temperature changing from Dew Point to Bubble Point
- Heats of Vaporization are defined for a pure material at a given temperature (usually the normal boiling temperature for pure material) and we are condensing over a range of temperatures

Enthalpy Balances: Reboiler

- Set up Control Volume around entire column

> Heat added = Enthalpy out - enthalpy in

$$
q_{r}-q_{c}=D H_{D}+B H_{B}-F H_{F}
$$

- \boldsymbol{q}_{r} is defined as heat ADDED via the Reboiler and is a positive number
- We will need to determine the temperature of each stream in order to calculate enthalpies

Txy diagram for saturated liquid feed case

世画 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Enthalpy Balances

－We have the temperature and composition of all streams
－Calculate enthalpy of each stream
－Start with enthalpy balance around condenser
－Solve for \boldsymbol{q}_{c}
－Next evaluate enthalpy balance around entire column
－Solve for \boldsymbol{q}_{r}

Enthalpy Balances - Heat Loads

Condenser

- Use \boldsymbol{q}_{c} to determine rate of cooling water required for condenser

$$
q_{c}=\dot{m}_{c w} C_{p H_{2} o}^{L}\left(T_{o u t}-T_{i n}\right)
$$

- Where $\dot{\boldsymbol{m}}_{c w}$ is mass flow rate of cooling water
- $C_{p \mathrm{H}_{2} \mathrm{O}}^{L}$ is the heat capacity of liquid water
- Typically $C_{p H_{2} \mathrm{O}}^{L} \approx 1 \frac{c a l}{g^{\circ} \mathrm{C}}$
- $\boldsymbol{T}_{i n}$ is the incoming temperature of the cooling water
- $\boldsymbol{T}_{\text {out }}$ is the outgoing temperature of the cooling water
- this may be limited by thermal pollution concerns
- of course, you don't want this stream to reach a boiling temperature

Enthalpy Balances - Heat Loads

Reboiler

- Use \boldsymbol{q}_{r} to determine rate of steam consumption required for reboiler

$$
\boldsymbol{q}_{r}=\quad \dot{m}_{\text {steam }} \Delta \boldsymbol{H}_{\mathrm{H}_{2} \mathrm{O}}^{v a p}
$$

- Where $\dot{m}_{\text {steam }}$ is mass flow rate of steam
- $\Delta \boldsymbol{H}_{\mathrm{H}_{2} \mathrm{O}}^{v a p}$ is the heat of the steam phase change
- This equation assumes steam enters as saturated vapor and exits as saturated steam - consult steam tables for enthalpy change of steam that has varying quality values

$\boldsymbol{T}\left({ }^{\circ} \mathrm{C}\right)$	$\boldsymbol{P}_{\boldsymbol{H}_{\mathbf{2}} \mathbf{O}}^{\text {st }}(\mathbf{k P a})$	$\Delta \boldsymbol{H}_{\boldsymbol{H}_{\mathbf{2}} \mathbf{O}}^{\text {vap }}\left(\frac{\mathbf{k J}}{\mathbf{k g}}\right)$
100	101.3	2257
188	1200	1986

Continuous Distillation－Tower Design
 McSH pp 701－712

Design of Sieve Plate Trays

－Pressure increases as you progress down the tower
－The pressure is needed to motivate the vapor through the holes in the tray and through the liquid held up on the tray

－Due to the ΔP ，a column of liquid is held up in the downcomer（similar to a monometer）of height \mathbf{Z}
－The text discusses methods for calculating Z，but we won＇t touch on it at this point
－The important point is that if \mathbf{Z} exceeds the distance to the weir on the plate immediately above then the column experiences FLOODING and the plates won＇t function properly

－The diameter of the column must be specified such that the vapor velocity does not exceed the＂Flooding Velocity＂

五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Flooding

- Figure 21.26 in McSH: Note that this is a log-log graph!
- Choose curve corresponding to your tray spacing
- Calculate $\frac{L_{\text {mass }}}{V_{\text {mass }}} \sqrt{\rho_{V} / \rho_{L}}$
- Note that \mathbf{L} and \mathbf{V} are MASS flow rates
- Note that ρ_{V} and ρ_{L} are MASS densities
- L/V we have used in the past were molar flows
- Find K_{V} from chart
- Use equation 21.68 to calculate flooding velocity

$$
u_{c}=u_{\text {flooding }}=K_{V} \sqrt{\frac{\rho_{L}-\rho_{V}}{\rho_{V}}}\left(\frac{\sigma}{20}\right)^{0.2}
$$

- σ is the surface tension in dyn/cm, \mathbf{u} is in ft / s on this graph
- A given chart will correspond to \mathbf{u} in ft/s or m/s: be sure you know which
 it is!

世衁 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Flooding

- Calculate $\frac{L_{\text {mass }}}{V_{\text {mass }}} \sqrt{\rho_{V} / \rho_{L}}$
- Note that \mathbf{L} and \mathbf{V} are MASS flow rates
- Note that ρ_{V} and ρ_{L} are MASS flow densities
- L/V we have used in the past were molar flows
- $\frac{L_{\text {mass }}}{V_{\text {mass }}}=\frac{L \overline{M W_{L}}}{V \overline{M W_{V}}}$
- When we are evaluating at the top of the tower the flows are often close to pure light component and $\overline{M W_{L}} \approx \overline{M W_{V}}$

- Therefore $\frac{L_{\text {mass }}}{V_{\text {mass }}} \approx \frac{L}{V}$
- $\frac{L}{V}=\frac{R}{R+1}$ can be used for $\frac{L_{\text {mass }}}{V_{\text {mass }}}$ as long as we are aware that it only applies when $\overline{M W_{L}} \approx \overline{M W_{V}}$

世五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Flooding, Continued

- Now we have a value for the a vapor velocity that will cause flooding.
- We will add a safety factor because we don't want to operate on the edge of flooding conditions
- Various sources use different factors, let's choose $u \approx 0.7 u_{\text {flood }}$
- Most of the plate is covered by holes
- $A=$ Total Area $=\frac{\pi D^{2}}{4}$
- Downcomer, etc cover 15% of total area
- Net area for flow $=0.85 \mathrm{~A}$

(b)

0

耳五 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Flooding, Continued

$$
V=u A_{n} \frac{P}{R T}
$$

Molar vapor flow $=($ volumetric flow) * $($ moles/volume $)$

- From ideal gas law $\mathrm{PV}=\mathrm{nRT}$ you get $\frac{P}{R T}=\frac{n}{V}=\frac{\text { moles }}{\text { Volume }}$
- In this context V is just a volume
- $A_{n}=0.85 \frac{\pi D^{2}}{4}$ net area for flow
- Steps
- Calculate $\boldsymbol{u}_{\text {flood }}$ and apply safety factor
- Use molar flow rate V to calculate $\boldsymbol{A}_{\boldsymbol{n}}$
- Calculate required column diameter
- Note: Column is most susceptible to flooding at the top of the tower. Use conditions corresponding to the top of the tower in this evaluation!

Flooding Example

- We have a distillate flow rate of $3259 \mathrm{~mol} /$ minute of CCL_{4} (light) and $\mathrm{C}_{8} \mathrm{H}_{18}$ (heavy)
- $x_{D}=0.859$
- Reflux ratio $=2.55$, Tray Spacing $=24$ "
- Flooding velocity is calculated at TOP of tower
- Problem Statement indicates that we should assume denisites of the liquid and vapor to be that of pure CCL_{4}
- Liquid density: $\rho_{L}=1490 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
- Vapor density: By the Ideal Gas Law we can calculate molar volume
- $\quad V=\frac{R T}{P}=\frac{83.14 \frac{\mathrm{bar} \mathrm{cm}^{3}}{\mathrm{molK}}(273.15+76.75) \mathrm{k}}{1.013 \mathrm{bar}}=2.872 * 10^{4} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
- Then the mass density can be calculated as
- $\rho_{V}=\frac{1 \mathrm{~mol}}{2.872 * 10^{4} \mathrm{~cm}^{3}} * \frac{153.823 \mathrm{~g}}{\mathrm{~mol}} * \frac{\mathrm{~kg}}{1000 \mathrm{~g}} * \frac{10^{6} \mathrm{~cm}^{3}}{\mathrm{~m}^{3}}=5.34 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
- $\mathrm{MW} \mathrm{CCI}_{4}=153.823$

世5 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Flooding Example

- Near the top of the tower (where the mole fractions are near 1.0), the average molecular weight of the liquid and the vapor are approximately equal at any location
- At the top of the tower $\frac{L_{\text {mass }}}{V_{\text {mass }}}=\frac{L * M W_{L}}{V * M W_{V}} \approx \frac{L}{V}=\frac{R}{R+1}=\frac{2.55}{2.55+1}=0.718$
- $\frac{\boldsymbol{L}_{\text {mass }}}{V_{\text {mass }}} \sqrt{\frac{\rho_{V}}{\rho_{L}}}=0.718 \sqrt{\frac{5.34 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{1490 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}}=\mathbf{0 . 0 4 3}$
- $K_{V}=u_{c} \sqrt{\frac{\rho_{V}}{\rho_{L}-\rho_{V}}}\left(\frac{20}{\sigma}\right)^{0.2}=0.37$
- Unless your surface tension is very different from water, the surface tension factor can be ignored

- $u_{c}=u_{\text {flooding }}=K_{V} \sqrt{\frac{\rho_{L}-\rho_{V}}{\rho_{V}}}=0.37 \sqrt{\frac{1490-5.34}{5.34}}=6.17 \frac{\mathrm{ft}}{\mathrm{s}}$

University at Buffalo

E五 Department of Chemical and Biological Engineering
School of Engineering and Applied Sciences

Flooding Example

- Vapor volumetric flow rate:
- V molar flow rate $V=L+D=(R+1) D=3.55 * 3259 \frac{\mathrm{~mol}}{\mathrm{~min}}=11,569 \frac{\mathrm{~mol}}{\mathrm{~min}}$
- Molar density $\rho_{V}=\frac{P}{R T}=\frac{1.013 \mathrm{bar}}{83.14 \frac{\mathrm{barcm}^{3} \mathrm{molK}}{\mathrm{mol}}(273.15+76.75) \mathrm{k}}=3.482 * 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}} * \frac{10^{6} \mathrm{~cm}^{3}}{\mathrm{~m}^{3}}=34.82 \frac{\mathrm{~mol}}{\mathrm{~m}^{3}}$
- $Q=\frac{V}{\rho_{V}}=\frac{11,569 \frac{\mathrm{~mol}}{\mathrm{~min}}}{34.82 \frac{\mathrm{~mol}}{\mathrm{~m}^{3}}}=332.2 \frac{\mathrm{~m}^{3}}{\min } * \frac{\mathrm{~min}}{60 \mathrm{~s}}=5.54 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} *\left(\frac{\mathrm{ft}}{0.305 \mathrm{~m}}\right)^{3}=195.3 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$

5 Department of Chemical and Biological Engineering school of Engineering and Applied Sciences

Flooding Example

- Column diameter:
- $Q=A_{n} * u=0.85 \frac{\pi D^{2}}{4} * u$
- (Volumetric flow rate = Area * velocity)
- Column is to operate at 50% of flooding velocity:
- $u=0.5 * u_{\text {flooding }}=0.5 * 6.17 \frac{\mathrm{ft}}{\mathrm{s}}=3.09 \frac{\mathrm{ft}}{\mathrm{s}}$
- $Q=195.3 \frac{f t^{3}}{s}=0.85 \frac{\pi D^{2}}{4} * 3.09 \frac{\mathrm{ft}}{\mathrm{s}}=2.06 \frac{\mathrm{ft}}{\mathrm{s}} * D^{2}$
- $D^{2}=\frac{195.3 \frac{f t^{3}}{s}}{2.06 \frac{f t}{s}}=94.67 \mathrm{ft}^{2}$
- $D=9.7 \mathrm{ft}$

