CE407 SEPARATIONS

Lecture 08

Instructor: David Courtemanche

University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

Continuous Distillation with Reflux – Nearly Pure Products McSH pp 692-694

• What if the purity required is $\mathbf{x}_{\mathbf{D}} = 0.9999?$

- You simply cannot draw the triangle small enough
- Not even if you blow up the section near **x**_D
- What if the purity required is $\mathbf{x}_{\mathbf{D}} = 0.999999?$
 - The width of your pen stroke doesn't allow you to distinguish between $\mathbf{x}_{\mathbf{D}} = 0.9999$ and $\mathbf{x}_{\mathbf{D}} = 0.999999$

What to do for Very High Purity cases?

- In a region a short distance from $\mathbf{x}_{D} = 0.9999$ the equilibrium curve is fairly straight and α is approximately constant
- According to constant molal overflow assumption, the Operating Line is straight
- Those are the two assumptions of the **Kremser Equation**!!!
- We cannot use the Kremser Equation across the entire column because the EQ Curve has so much curvature
- We cannot use the McCabe-Thiele method across the entire column because the EQ Curve and the OP Line converge so closely that the steps become too small as we approach x_p values extremely close to 1
- We will split the column into two sections with a cutoff value of **x**, **x**_{cutoff}
- x_{cutoff} is chosen so that we can successfully use McCabe-Thiele below the cutoff (i.e. the triangles are not too small) and that the EQ curve can be considered straight between x_{cutoff} and x_D so that Kremser is appropriate

Kremser Region

Equilibrium "Line"

- We need to approximate the EQ Curve with a straight line in this region
- Obviously the (1, 1) must be on the EQ Line
- We need one more point to define the EQ Line
 - $\mathbf{y}^* = \mathbf{y}^*(\mathbf{x}_{\text{cutoff}})$
- In other words, use VLE data or relationship to calculate what value of **y** is in equilibrium with **x**_{cutoff}
 - Note that in Excel one can use Goalseek to find the temperature leading to x = x_{cutoff} and then read off y* = y*(x_{cutoff})
- Solve for $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$ that satisfies both (1, 1) and $(\mathbf{x}_{cutoff}, \mathbf{y}^*(\mathbf{x}_{cutoff}))$

Operating Line

• We already have that from $y_{n+1} = \frac{R}{R+1} x_n + \frac{x_D}{R+1}$

Caution: We are trying to determine a mole fraction that has many significant digits

• Carry several more digits in each term of the calculation than the number in the specification

High Purity – Kremser Section

- Kremser Equation $N = \frac{\ln[(y_b y_b^*)/(y_a y_a^*)]}{\ln[(y_b y_a)/(y_b^* y_a^*)]}$
- a is at $\mathbf{x} = \mathbf{x}_{\mathbf{D}}$
 - $\mathbf{X}_{a} = \mathbf{X}_{D}$
 - $y_a = x_D$
 - $y_a^* = y^*(x_D)$ is calculated from the the EQ "Line" $y = m^* x_D + b$
 - Note that the "b" has nothing to do with position b, it is the intercept in the EQ "Line" equation
- b is at **x** = **x**_{cutoff}
 - $\mathbf{X}_{\mathbf{b}} = \mathbf{X}_{\mathbf{cutoff}}$
 - $y_b = \frac{R}{R+1} x_{cutoff} + \frac{x_D}{R+1}$
 - $y_b^* = y^*(x_{cutoff})$ is the value of y in equilibrium with x_{cutoff} . This is the value that we used to determine the EQ "Line". You could calculate it with the EQ "Line" equation, but why bother? You already have it.

High Purity

- Plug the values for y_a , y_b , y_a^* , and y_b^* into Kremser equation to obtain $N_{Kremser}$
- Use McCabe-Thiele to determine the number of stages between x_B and x_{cutoff}
- This gives you **N**graphical
 - In the graph at the right, $N_{graphical} = 2 + Reboiler$
- N = N_{Kremser} + N_{graphical}
- As always, round up for partial stages

High Purity with Non-ideal Stages

- We need to calculate effective equilibrium values for y_a^* and y_b^*
- $y_a^{*'} = y_a + \eta_M (y_a^* y_a)$
- $y_b^{*'} = y_b + \eta_M (y_b^* y_b)$
- $N = \frac{\ln[(y_b y_b^{*\prime})/(y_a y_a^{*\prime})]}{\ln[(y_b y_a)/(y_b^{*\prime} y_a^{*\prime})]}$
- Do the same procedure used before for McCabe-Thiele and η_{M} to determine $\mathbf{N}_{\text{graphical}}$

Enthalpy Balances McSH pp 694-701 (also Eq. 21-1 and 21.2 on pp 679 and 682)

• We want to develop expressions for

$H_x(T, x)$	and	$H_y(T,y)$
Liquid Enthalpy		Vapor Enthalpy

- We will determine enthalpy as a function of temperature, composition and phase
- Enthalpy is a state function and is relative to a reference state. We can choose any state as our zero point units are energy/mole
 - We will choose to use: Each pure component as a liquid at the boiling temperature of the lighter component *this choice will prove to simplify later calculations…*
- Declare: $H_{x,1}(T_{nb1}) = 0$ and $H_{x,2}(T_{nb1}) = 0$
- $H_{x,1}$ is the enthalpy of pure component 1, liquid form
- $H_{x,2}$ is the enthalpy of pure component 2, liquid form
- T_{nb1} is the Normal Boiling Temperature of pure Component 1
- T_{nb2} is the Normal Boiling Temperature of pure Component 2

Enthalpy of Pure Liquids

- $H_{xi}(T)$ is the enthalpy of pure component *i* in liquid form at temperature **T**
- $H_{xi}(T) = H_{xi}(T_{nb1}) + C_{pi}^{L} * (T T_{nb1})$
 - C_{pi}^{L} is the Liquid Heat Capacity of Pure Component i
 - This assumes a constant value for the heat capacity
 - Units are $\frac{energy}{mol \, ^{\circ}\mathrm{C}}$ eg $\frac{cal}{mol \, ^{\circ}\mathrm{C}}$
 - Because we have chosen a reference of $H_{xi}(T_{nb1}) = 0$

$$H_{xi}(T) = C_{pi}^L * (T - T_{nb1})$$

Enthalpy of Pure Vapors, light component

- $H_{y1}(T)$ is the enthalpy of pure component **1** in vapor form at temperature **T**
- $H_{y1}(T) = H_{x1}(T_{nb1}) + \Delta H_1^{vap}(T_{nb1}) + C_{p1}^V * (T T_{nb1})$
 - C_{p1}^{V} is the Vapor Heat Capacity of Pure Component 1
 - This assumes a constant value for the heat capacity
 - Units are $\frac{energy}{mol \, ^{\circ}\mathrm{C}}$ eg $\frac{cal}{mol \, ^{\circ}\mathrm{C}}$
 - $\Delta H_1^{vap}(T_{nb1})$ is the heat of vaporization of pure component 1 at its normal boiling temperature
 - Because we have chosen a reference of $H_{xi}(T_{nb1}) = 0$

$$H_{y1}(T) = \Delta H_1^{vap}(T_{nb1}) + C_{p1}^V * (T - T_{nb1})$$

Enthalpy of Pure Vapors, heavy component

 $H_{y2}(T)$ is the enthalpy of pure component **2** in vapor form at temperature **T**

$$H_{y2}(T) = H_{x2}(T_{nb1}) + C_{p2}^{L} * (T_{nb2} - T_{nb1}) + \Delta H_{2}^{vap}(T_{nb2}) + C_{p2}^{V} * (T - T_{nb2})$$

reference state raise liquid temp to T_{nb2} convert to vapor at T_{nb2} superheat vapor to final temp

- $\Delta H_2^{vap}(T_{nb2})$ is the heat of vaporization of pure component 2 at its normal boiling temperature
- It will prove useful to express $C_{p2}^{V} * (T T_{nb2})$ as

$$C_{p2}^{V} * (T - T_{nb2}) = C_{p2}^{V} * (T - T_{nb1} + T_{nb1} - T_{nb2})$$

= $C_{p2}^{V} * (T_{nb1} - T_{nb2}) + C_{p2}^{V} * (T - T_{nb1})$

- This allows all four terms $(H_{x1}, H_{x2}, H_{y1}, H_{y2})$ to be expressed in terms of $(T T_{nb1})$
- Because we have chosen a reference of $H_{xi}(T_{nb1}) = 0$

$$H_{y2}(T) = C_{p2}^{L} * (T_{nb2} - T_{nb1}) + \Delta H_{2}^{vap}(T_{nb2}) + C_{p2}^{V} * (T_{nb1} - T_{nb2}) + C_{p2}^{V} * (T - T_{nb1})$$

0

Example

• Benzene (1) and Toluene (2)

Component	C _{pi} ^L cal/molC	C _{pi} ^v cal/molC	▲ H _i ^{vap} cal/mol	T _{nbi} C
1	33	23	7360	80.1
2	40	33'	7960	110.6

- $H_{x1}(T) = 0 + 33 * (T 80.1) = 33 * (T 80.1)$
- $H_{x2}(T) = 0 + 40 * (T 80.1) = 40 * (T 80.1)$
- $H_{y1}(T) = 0 + 7360 + 23 * (T 80.1) = 7360 + 23 * (T 80.1)$
- $H_{y2}(T) = 0 + 40 * (110.6 80.1) + 7960 + 33' * (80.1 110.6) + 33' * (T 80.1)$ = 8174 + 33' * (T - 80.1)

Txy Phase Diagram Benzene and Toluene

Enthalpy of Mixtures

- Liquid Mixtures
 - $H_x(T,x) = x * H_{x1}(T) + (1 x) * H_{x2}(T) + \Delta H^{mix}(T,x)$
 - For an ideal mixture $\Delta H^{mix}(T, x) = 0$
- Vapor Mixtures
 - $H_y(T, y) = y * H_{y1}(T) + (1 y) * H_{y2}(T)$
 - For a mixture of vapors $\Delta H^{mix}(T, x) = 0$

Enthalpy of Mixtures, example

•
$$H_x(t,x) = x * 33 * (T - 80.1) + (1 - x) * 40 * (T - 80.1)$$

= $[33x + 40(1 - x)] * (T - 80.1)$

= (40 - 7x) * (T - 80.1)

• $H_y(T,y) = y * [7360 + 23(T - 80.1)] + (1 - y) * [8174 + 33(T - 80.1)]$ = 8174 - 814y + (33 - 10y) * (T - 80.1)

