## CE407 SEPARATIONS

## Lecture 02

## Instructor: David Courtemanche

- University at Buffalo

Department of Chemical
and Biological Engineering
school of fegnineeing and Applied s siences

## Counter Current Absorption

- See notes titled "Counter Current Absorption" for demonstration that counter current contact is the most efficient manner to clean up a mixture
- Absorbers - 3 components considered:
- Fixed Gas / Inert Gas
- Solute
- Absorbing Liquid
typically Air
the material we are removing typically water or oil
- The "Usual Assumptions" state that the Fixed gas does not transfer into the Absorbing Liquid and the Absorbing Liquid does not evaporate into the Fixed Gas


## Counter Current Absorption

－a refers to top of tower，b refers to bottom
－Entering Gas
$\mathbf{V}_{\mathbf{b}}=$ the \＃of moles of total gas entering at bend of column $\mathbf{y}_{\mathrm{b}}=$ the mole fraction of solute in gas entering at $b$ end Note：No subscript $i$ is needed for the mole fraction．It is understood that the $y_{b}$ refers to the solute． $\left(V_{i}\right)_{b}=\mathbf{y}_{\mathrm{b}} * \mathbf{V}_{\mathrm{b}}=$ the \＃of moles of SOLUTE entering at $b$ end $\mathrm{V}_{\mathrm{c}}=\left(1-\mathbf{y}_{\mathrm{b}}\right) * \mathrm{~V}_{\mathrm{b}}=$ the \＃of moles of INERT GAS entering at $b$ end

－Note that $\mathrm{V}_{\mathrm{c}}$ is constant．（That＇s what the＂c＂stands for．．．）
－If entering gas is presented as a volumetric flow，use the Ideal Gas Law to convert to molar flow

## Counter Current Absorption

－Exiting Gas
－Often specified by mole fraction of solute in exiting vapor stream
－ $\mathbf{V}_{\mathbf{a}}$＝the \＃of moles of total gas exiting at a end of column
－ $\mathbf{y}_{\mathrm{a}}=$ the mole fraction of solute in gas exiting at a end
－Note：No subscript $i$ is needed for the mole fraction．It is understood that the $\mathrm{y}_{\mathrm{a}}$ refers to the solute．
－$\left(V_{i}\right)_{a}=y_{a}{ }^{*} V_{a}=y_{a}{ }^{*}\left(\left(V_{i}\right)_{a}+V_{c}\right)=$ the \＃of moles of SOLUTE exiting at a end

－This can be rearranged to obtain

$$
\left(V_{i}\right)_{a}=\frac{y_{a}}{1-y_{a}} V_{c}
$$

－Note that $\mathrm{V}_{\mathrm{c}}$ is constant and therefore equal to value calculated at b end of tower．

世衁 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

## Counter Current Absorption

－Exiting gas may be specified by \％of solute removed
－＂R \％of incoming solute is removed＂
－Therefore the rest of the solute remains in the exiting stream and the number of moles of solute in the exiting vapor is

$$
\left(V_{i}\right)_{a}=\left(\frac{100-R}{100}\right)\left(V_{i}\right)_{b}
$$

－The mole fraction of the exiting vapor can be calculated as

$$
y_{a}=\frac{\left(V_{i}\right)_{a}}{\left(V_{i}\right)_{a}+V_{c}}
$$

## Counter Current Absorption

- $\quad \mathbf{L}_{\mathbf{a}}=$ total \# of moles of liquid entering at a end
- This is a given (for now)
- $\mathbf{x}_{\mathrm{a}}=$ mole fraction of solute in entering liquid at $\mathbf{a}$ end
- This will be given (and is often equal to 0 )
- $\mathrm{L}_{\mathrm{c}}=\#$ of moles of pure absorbing liquid

$$
L_{c}=\left(1-x_{a}\right) * L_{a}
$$

- This is a constant through the tower under the "Usual Assumptions"

- $\left(\mathrm{L}_{\mathrm{i}}\right)_{\mathrm{a}}=\#$ of moles of solute entering with the liquid stream at a end

$$
\left(L_{i}\right)_{a}=x_{a}^{*} L_{a}
$$



## Counter Current Absorption

- Process specifications define the three streams vapor in, vapor out, and liquid in
- We will use a mass balance on the solute to determine the liquid out stream conditions

$$
\begin{aligned}
\text { Solute In } & =\text { Solute Out } \\
\left(V_{i}\right)_{b}+\left(L_{i}\right)_{a} & =\left(V_{i}\right)_{a}+\left(L_{i}\right)_{b}
\end{aligned}
$$

- From this we see that: $\quad\left(\mathrm{L}_{\mathrm{i}}\right)_{b}=\left(\mathrm{V}_{\mathrm{i}}\right)_{b}-\left(\mathrm{V}_{\mathrm{i}}\right)_{a}+\left(\mathrm{L}_{\mathrm{i}}\right)_{\mathrm{a}}$
- We can compute exiting liquid mole fraction as:

$$
x_{b}=\frac{\left(L_{i}\right)_{b}}{\left(L_{i}\right)_{b}+L_{c}}=\frac{\text { moles solute exiting in liquid }}{\text { total moles exiting in liquid }}
$$

- Note: This mass balance is telling us what the exiting liquid stream must be if we are to achieve the specified change to the vapor stream - we have not looked at what tower design is required to accomplish this change!

世衁 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

## Operating Line

－A plot of mole fraction of vapor versus mole fraction of liquid throughout the tower

－Flow rate of vapor decreases as we go up higher in the tower（we are removing solute．．．）
－Flow rate of liquid increases as we go lower in the tower（we are absorbing solute．．．）
－ $\mathrm{V}_{\mathrm{c}}$ and $\mathrm{L}_{\mathrm{c}}$ are assumed constant
－We know the points at the $\mathbf{a}$ and $\mathbf{b}$ ends of the tower－how do we determine the intermediate points？

## Operating Line

- In order to determine the relationship of $y$ to $x$ at any given height in the tower, we establish a control volume from the top of the tower to an arbitrary height
- At the top:

$$
\begin{aligned}
& L_{c}=\left(1-x_{a}\right) * L_{a} \text { therefore } L_{a}=\frac{L_{c}}{1-x_{a}} \\
& V_{c}=\left(1-y_{a}\right) * V_{a} \text { therefore } V_{a}=\frac{V_{c}}{1-y_{a}}
\end{aligned}
$$

- At a generic height:

$$
\begin{aligned}
& L_{c}=(1-x) * L \text { therefore } L=\frac{L_{c}}{1-x} \\
& V_{c}=(1-y) * V \text { therefore } V=\frac{V_{c}}{1-y}
\end{aligned}
$$



- We have now defined the total molar flow of vapor and liquid at both ends of the control volume.


## Operating Line

- Total Molar Balance Across the Control Volume

> Total Moles In = Total Moles Out

$$
\begin{gathered}
\mathrm{V}+\mathrm{L}_{\mathrm{a}}=\mathrm{V}_{\mathrm{a}}+\mathrm{L} \\
\frac{V_{c}}{1-y}+\frac{L_{c}}{1-x_{a}}=\frac{V_{c}}{1-y_{a}}+\frac{L_{c}}{1-x}
\end{gathered}
$$

- Rearrange algebraically:

- This is called the Operating Line. It is actually somewhat curved. If the system is dilute it is fairly straight.


## Operating Line

- What if we had done a solute balance instead?

Solute $\mathrm{In}=$ Solute out

$$
V^{*} y+L_{a}^{*} x_{a}=V_{a}^{*} y_{a}+L^{*} x
$$

- If the system is dilute (say, $x$ and $y<0.1$ or 0.05 )
- Then $V_{a} \approx V_{b} \approx V$ and $L_{a} \approx L_{b} \approx L$
- Now solute balance is approximately


$$
\begin{aligned}
& \mathrm{V}^{*} \mathrm{y}+\mathrm{L}^{*} \mathrm{x}_{\mathrm{a}}=\mathrm{V}^{*} \mathrm{y}_{\mathrm{a}}+\mathrm{L}^{*} \mathrm{x} \\
& \text { and therefore } \\
& y=y_{a}+\frac{L}{V} *\left(x-x_{a}\right)
\end{aligned}
$$

- This is an approximation - USE THE BOXED EQUATION ON PREVIOUS SLIDE!!!


## L/V

- $\mathrm{L} / \mathrm{V}$ is a common parameter when describing an absorption tower.
- For a dilute system it is relatively constant, but what value do we use?
- 3 Reasonable Choices:
- $\frac{L}{V}=\frac{\frac{1}{2}\left(L_{a}+L_{b}\right)}{\frac{1}{2}\left(V_{a}+V_{b}\right)}$
- $\frac{L}{V}=\frac{1}{2}\left(\frac{L_{a}}{V_{a}}+\frac{L_{b}}{V_{b}}\right)$
- $\frac{L}{V}=\frac{y_{b}-y_{a}}{x_{b}-x_{a}} \quad$ Preferred Method

- $y=y_{a}+\frac{L}{V} *\left(x-x_{a}\right)$ - Approximate OP Line for dilute cases

世衁 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

## Operating Line

- Choose several values of $x$ between $x a$ and $x b$
- Use operating line equation (boxed equation on slide 10) to calculate the corresponding values of $y$
- Plot:

- The Operating Line is just a MOLE BALANCE (I will sometimes use the term mass balance, as well...) (If there are no chemical reactions taking place then a mole balance and a mass balance are equivalent.)


## Absorption Tower Analysis

- A tower has many stages (or trays)
- Liquid flows down channel on left hand side of this drawing
- Liquid flows across the tray
- Level is set by weir
- Vapor flows up through holes in tray

- Mass transfer occurs between the bubbles and the liquid
- Liquid flows down the channel on right hand side of this drawing
- ASSUME THAT VAPOR LEAVING A GIVEN STAGE IS IN EQUILIBRIUM WITH THE LIQUID LEAVING THAT SAME STAGE


## Absorption Tower Analysis

－Stages are numbered from top to bottom
－ $\mathbf{n}$ is an arbitrary stage location
－ $\mathbf{N}$ is the bottom stage
－Subscripts for $\mathbf{x}$ and $\mathbf{y}$ refer to the stage from which that flow originates（i．e．which stage did it come from）
－For stage $\mathbf{n}$ ：
－Vapor enters from stage $\mathbf{n + 1}$ and has mole fraction $\mathbf{y}_{\mathrm{n}+1}$
－Liquid enters from stage $\mathbf{n - 1}$ and has mole fraction $\mathbf{x}_{\mathrm{n}-1}$
－Vapor leaving stage $\mathbf{n}$ has mole fraction $\mathbf{y}_{\mathbf{n}}$
－Liquid leaving stage $\mathbf{n}$ has mole fraction $\mathbf{x}_{\mathbf{n}}$
－$\quad \mathbf{x}_{\mathrm{n}}$ and $\mathbf{y}_{\mathrm{n}}$ are related via Equilibrium Relations
－ $\mathbf{x}_{\mathrm{n}}$ and $\mathbf{y}_{\mathrm{n}+1}$ are related via the Operating Line
－Note that $\mathbf{x}_{\mathrm{n}}$ and $\mathbf{y}_{\mathrm{n}+1}$ cross the control volume we used
 to analyze the operating line

衁 Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

## Equilibrium Relationships

－Raoult＇s Law

$$
\begin{aligned}
& y_{i} P=x_{i} P_{i}^{\text {sat }}(T) \\
& \qquad y_{n}=\frac{P_{i}^{s a t}(T)}{P} * x_{n}
\end{aligned}
$$

－Henry＇s Law

$$
\begin{aligned}
& y_{i} P=x_{i} \gamma_{i}^{\infty} P_{i}^{s a t}(T) \\
& \qquad y_{n}=\frac{k_{i}(T)}{P} x_{n}
\end{aligned}
$$

－Note that subscript $\mathbf{n}$ refers to stage number－it is understood that it refers to the solute
－Vapor Liquid Equilibria（VLE）data supplied
－Be cautious of the units！
－They will often be mass ratios，mass fractions，partial pressures，etc
－You MUST convert to mole fractions

## McCabe-Thiele Method

- From notes titled "Counter Current Absorption", scheme 3
we can see that even a two stage calculation is very complex. We want to solve for $\mathbf{N}$ stages...
- McCabe-Thiele is a graphical solution
- Plot both the Operating Line (mass balance) and the Equilibrium Curve on the same graph.
- Point I is $\left(\mathbf{x}_{\mathrm{a}}, \mathbf{y}_{\mathrm{a}}\right)$ which is $\left(\mathbf{x}_{0}, \mathbf{y}_{1}\right)$
- Point II has the same value of $y$ as Point I and is therefore
 $\mathbf{y}=\mathbf{y}_{1}$. As Point II lies on the equilibrium curve $\mathbf{x}=\mathbf{x}_{1}$. (Remember $\mathbf{x}_{\mathbf{n}}$ and $\mathbf{y}_{\mathrm{n}}$ are in equilibrium!)
- Point III has the same value of $x$ as Point II and is
therefore $\mathbf{x}=\mathbf{x}_{1}$. Because Point III is on the Operating Line we know that $\mathbf{y}=\mathbf{y}_{2}$. (Remember that $\left(\mathbf{x}_{\mathrm{n}}, \mathbf{y}_{\mathrm{n}+1}\right)$ are on the Operating Line!)
- We have just determined the relationship from $y=y 1$ to $y=y 2$ : we have moved one stage! ${ }^{17}$


## McCabe－Thiele

－Continue until we reach（ $\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}$ ）
－Note that it is unlikely that any stage will land exactly
on（ $\mathbf{x}_{\mathrm{b}}, \mathbf{y}_{\mathrm{b}}$ ）
－This looks like about 3.6 stages
－Obviously there is no physical meaning of a partial stage
－Report this on homework or in exam as＂3．6 stages，to be rounded up to 4 stages＂
－Stepping ALWAYS begins and finishes on the Operating Line！
－Later in the course we will learn how to determine the physical height of each stage

－Rough estimate： 6 ＂for small flows and 2＇－3＇for large flows

