CE407 SEPARATIONS

Lecture 02

Instructor: David Courtemanche

University at Buffalo Department of Chemical and Biological Engineering School of Engineering and Applied Sciences

- See notes titled "Counter Current Absorption" for demonstration that counter current contact is the most efficient manner to clean up a mixture
- Absorbers 3 components considered:
 - Fixed Gas / Inert Gas
 - Solute
 - Absorbing Liquid

typically Air the material we are removing typically water or oil

• The "Usual Assumptions" state that the Fixed gas does not transfer into the Absorbing Liquid and the Absorbing Liquid does not evaporate into the Fixed Gas

• **a** refers to top of tower, **b** refers to bottom

Entering Gas

 V_{b} = the # of moles of total gas entering at b end of column

 y_b = the mole fraction of solute in gas entering at b end Note: No subscript i is needed for the mole fraction. It is understood that the y_b refers to the solute.

 $(V_i)_b = y_b * V_b =$ the # of moles of SOLUTE entering at b end $V_c = (1 - y_b) * V_b =$ the # of moles of INERT GAS entering at b end

- Note that V_c is constant. (That's what the "c" stands for...)
- If entering gas is presented as a volumetric flow, use the Ideal Gas Law to convert to molar flow

Exiting Gas

- Often specified by mole fraction of solute in exiting vapor stream
- V_a = the # of moles of total gas exiting at a end of column
- y_a = the mole fraction of solute in gas exiting at a end
- Note: No subscript i is needed for the mole fraction. It is understood that the y_a refers to the solute.
- (V_i)_a = y_a * V_a = y_a * ((V_i)_a + V_c) = the # of moles of SOLUTE exiting at a end
- This can be rearranged to obtain

$$(V_i)_a = \frac{y_a}{1 - y_a} V_c$$

• Note that V_c is constant and therefore equal to value calculated at b end of tower.

٩	1
and a state	
	1-
6	1
-	VL
	a br

- Exiting gas may be specified by % of solute removed
 - "R % of incoming solute is removed"
 - Therefore the rest of the solute remains in the exiting stream and the number of moles of solute in the exiting vapor is

$$(V_i)_a = \left(\frac{100 - R}{100}\right) (V_i)_b$$

• The mole fraction of the exiting vapor can be calculated as

$$y_a = \frac{(V_i)_a}{(V_i)_a + V_c}$$

- $L_a = total # of moles of liquid entering at a end$
 - This is a given (for now)
- $\mathbf{x}_{\mathbf{a}}$ = mole fraction of solute in entering liquid at \mathbf{a} end
 - This will be given (and is often equal to 0)
- $L_c = #$ of moles of pure absorbing liquid

$$L_{c} = (1 - X_{a}) * L_{a}$$

- This is a constant through the tower under the "Usual Assumptions"
- $(L_i)_a = #$ of moles of solute entering with the liquid stream at **a** end

$$(L_i)_a = X_a * L_a$$

- Process specifications define the three streams vapor in, vapor out, and liquid in
- We will use a mass balance on the solute to determine the liquid out stream conditions

Solute In = Solute Out $(V_i)_b + (L_i)_a = (V_i)_a + (L_i)_b$

- From this we see that: $(L_i)_b = (V_i)_b (V_i)_a + (L_i)_a$
- We can compute exiting liquid mole fraction as:

 $x_b = \frac{(L_i)_b}{(L_i)_b + L_c} = \frac{\text{moles solute exiting in liquid}}{\text{total moles exiting in liquid}}$

• Note: This mass balance is telling us what the exiting liquid stream must be if we are to achieve the specified change to the vapor stream – we have not looked at what tower design is required to accomplish this change!

• A plot of mole fraction of vapor versus mole fraction of liquid throughout the tower

- Flow rate of vapor decreases as we go up higher in the tower (we are removing solute...)
- Flow rate of liquid increases as we go lower in the tower (we are absorbing solute...)
- V_c and L_c are assumed constant
- We know the points at the a and b ends of the tower how do we determine the intermediate points?

• In order to determine the relationship of y to x at any given height in the tower, we establish a control volume from the top of the tower to an arbitrary height

L

• At the top:

$$L_{c} = (1 - x_{a}) * L_{a} \text{ therefore } L_{a} = \frac{L_{c}}{1 - x_{a}}$$
$$V_{c} = (1 - y_{a}) * V_{a} \text{ therefore } V_{a} = \frac{V_{c}}{1 - y_{a}}$$

• At a generic height:

$$L_c = (1 - x) * L$$
 therefore $L = \frac{L_c}{1 - x}$

$$V_c = (1 - y) * V$$
 therefore $V = \frac{V_c}{1 - y}$

We have now defined the total molar flow of vapor and liquid at both ends of the control volume.

• Total Molar Balance Across the Control Volume

Total Moles In = Total Moles Out

 $V + L_a = V_a + L$

$$\frac{V_c}{1-y} + \frac{L_c}{1-x_a} = \frac{V_c}{1-y_a} + \frac{L_c}{1-x}$$

Rearrange algebraically:

• This is called the **Operating Line**. It is actually somewhat curved. If the system is dilute it is fairly straight.

10

• What if we had done a solute balance instead?

Solute In = Solute out

$$V * y + L_a * x_a = V_a * y_a + L * x$$

- If the system is dilute (say, x and y < 0.1 or 0.05)
 - Then $V_a \approx V_b \approx V$ and $L_a \approx L_b \approx L$
- Now solute balance is approximately

$$V * y + L * x_a = V * y_a + L * x$$

and therefore
$$y = y_a + \frac{L}{V} * (x - x_a)$$

This is an approximation – USE THE BOXED EQUATION ON PREVIOUS SLIDE!!!

11

L/V

- L/V is a common parameter when describing an absorption tower.
- For a dilute system it is relatively constant, but what value do we use?
- 3 Reasonable Choices:

•
$$\frac{L}{V} = \frac{\frac{1}{2}(L_a + L_b)}{\frac{1}{2}(V_a + V_b)}$$

•
$$\frac{L}{V} = \frac{1}{2}\left(\frac{L_a}{V_a} + \frac{L_b}{V_b}\right)$$

•
$$\frac{L}{V} = \frac{y_b - y_a}{x_b - x_a}$$
Preferred Method
•
$$y = y_a + \frac{L}{V} * (x - x_a)$$
 - Approximate OP Line for dilute cases

- Choose several values of x between xa and xb
- Use operating line equation (boxed equation on slide 10) to calculate the corresponding values of y
- Plot:

• The Operating Line is just a MOLE BALANCE (I will sometimes use the term mass balance, as well...) (If there are no chemical reactions taking place then a mole balance and a mass balance are equivalent.)

Absorption Tower Analysis

- A tower has many stages (or trays)
- Liquid flows down channel on left hand side of this drawing
- Liquid flows across the tray
 - Level is set by weir
- Vapor flows up through holes in tray
- Mass transfer occurs between the bubbles and the liquid
- Liquid flows down the channel on right hand side of this drawing
- ASSUME THAT VAPOR LEAVING A GIVEN STAGE IS IN EQUILIBRIUM WITH THE LIQUID LEAVING THAT SAME STAGE

Absorption Tower Analysis

- Stages are numbered from top to bottom
- **n** is an arbitrary stage location
- **N** is the bottom stage
- Subscripts for **x** and **y** refer to the stage from which that flow originates (i.e. which stage did it come from)
- For stage **n**:
 - Vapor enters from stage n+1 and has mole fraction y_{n+1}
 - Liquid enters from stage n-1 and has mole fraction x_{n-1}
 - Vapor leaving stage **n** has mole fraction **y**_n
 - Liquid leaving stage **n** has mole fraction **x**_n
- \mathbf{x}_{n} and \mathbf{y}_{n} are related via Equilibrium Relations
- \mathbf{x}_{n} and \mathbf{y}_{n+1} are related via the Operating Line
 - Note that x_n and y_{n+1} cross the control volume we used to analyze the operating line

Equilibrium Relationships

• Raoult's Law $y_i P = x_i P_i^{sat}(T)$

$$y_n = \frac{P_i^{sat}(T)}{P} * x_n$$

• Henry's Law $y_i P = x_i \gamma_i^{\infty} P_i^{sat}(T)$

$$y_n = \frac{k_i(T)}{P} x_n$$

- Note that subscript **n** refers to stage number it is understood that it refers to the solute
- Vapor Liquid Equilibria (VLE) data supplied
 - Be cautious of the units!
 - They will often be mass ratios, mass fractions, partial pressures, etc
 - You MUST convert to mole fractions

McCabe-Thiele Method

- From notes titled "Counter Current Absorption", scheme 3 we can see that even a two stage calculation is very complex. We want to solve for N stages...
- McCabe-Thiele is a graphical solution
- Plot both the Operating Line (mass balance) and the Equilibrium Curve on the same graph.
- Point I is $(\mathbf{x}_a, \mathbf{y}_a)$ which is $(\mathbf{x}_0, \mathbf{y}_1)$
- Point II has the same value of y as Point I and is therefore y = y₁. As Point II lies on the equilibrium curve x = x₁. (Remember x_n and y_n are in equilibrium!)
- Point III has the same value of x as Point II and is therefore x = x₁. Because Point III is on the Operating Line we know that y = y₂. (Remember that (x_n, y_{n+1}) are on the Operating Line!)

McCabe-Thiele

- Continue until we reach $(\mathbf{x}_{b}, \mathbf{y}_{b})$
- Note that it is unlikely that any stage will land exactly on $(\mathbf{x_b}, \mathbf{y_b})$
- This looks like about 3.6 stages
 - Obviously there is no physical meaning of a partial stage
 - Report this on homework or in exam as "3.6 stages, to be rounded up to 4 stages"
- Stepping **ALWAYS** begins and finishes on the Operating Line!
- Later in the course we will learn how to determine the physical height of each stage
 - Rough estimate: 6" for small flows and 2'-3' for large flows

