Bubble and dew points

end

```
Psat Antoine databank.m
(See posted code.)
Psat Antoine.m
function Psat = Psat_Antoine( i, T )
%saturated vapor pressures from Antoine's equation for pure substances
%components
%i = 1: n-octane
%i = 2: n-nonane
if i == 1
    ii = 6;
    ii = 7;
end
Psat = Psat_Antoine_databank( ii , T );
end
f bubble.m
function [ T, y ] = f_bubble( P, x )
%outputs: bubble point temperature (degC), vapor-phase mole fractions
%inputs: pressure (mm Hg), liquid-phase mole fractions
T = fsolve(@bubble, 100.0);
for i = 1 : length(x)
    y(i) = x(i) * Psat_Antoine(i,T) / P;
end
    function [ lhs ] = bubble( T )
    1hs = -1;
    for ii = 1 : length(x)
         lhs = lhs + x(ii) * Psat_Antoine(ii,T) / P;
    end
    end
```

f dew.m

Session

```
>> [ T, y ] = f_bubble( 760, [0.4, 0.6] )
```

Equation solved.

fsolve completed because the vector of function values is near zero as measured by the default value of the function tolerance, and the problem appears regular as measured by the gradient.

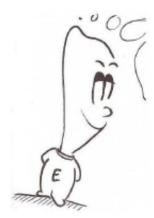
<stopping criteria details>

```
T =
138.8025

y =
0.5683 0.4317
```

```
>> [ T, x ] = f_dew( 760, [0.7, 0.3] )
```

Equation solved.


fsolve completed because the vector of function values is near zero as measured by the default value of the function tolerance, and the problem appears regular as measured by the gradient.

```
<stopping criteria details>
```

```
T =
135.3227
x =
0.5393 0.4607
```

>>

Comments

How can life be so good?