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Abstract—We address the fundamental problem of iden-
tifying the optimal power assignment sequence for hybrid
automatic-repeat-request (H-ARQ) communications over quasi-
static Rayleigh fading channels. For any targeted H-ARQ
link outage probability, we find the sequence of power values
that minimizes the average total expended transmission power.
We first derive a set of equations that describe the optimal
transmission power assignment and enable its exact recursive
calculation. To reduce calculation complexity, we also develop
an approximation to the optimal power sequence that is close to
the numerically calculated exact result. The newly founded power
allocation solution reveals that conventional equal-power H-ARQ
assignment is far from optimal. For example, for targeted outage
probability of 10−3 with a maximum of two transmissions, the
average total transmission power with the optimal assignment is
9 dB lower than the equal-power protocol. The difference in aver-
age total power cost grows further when the number of allowable
retransmissions increases (for example, 11 dB gain with a cap of
5 transmissions) or the targeted outage probability decreases (27
dB gain with outage probability 10−5 and transmissions capped
at 5). Interestingly, the optimal transmission power assignment
sequence is neither increasing nor decreasing; its form depends
on given total power budget and targeted outage performance
levels. Extensive numerical and simulation results are presented
to illustrate the theoretical development.

Index Terms—Hybrid automatic-repeat-request (H-ARQ) pro-
tocol, optimum power allocation, outage probability, Rayleigh
fading.

I. INTRODUCTION

AUTOMATIC-repeat-request (ARQ) communication pro-
tocols, in which a receiver requests retransmission when

a packet is not correctly received, are commonly used in data
link control to enable reliable data packet transmissions [1]–
[7]. In a basic/simplest ARQ protocol, a receiver decodes an
information packet based only on the received signal in each
transmission round [1], [2]. Advanced ARQ schemes, in which
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a receiver may decode an information packet by combining
received signals from all previous transmission rounds, have
been known as hybrid ARQ (H-ARQ) protocols [3]–[7]. Since
the receiver needs to save previously received signals, H-ARQ
communication protocols require more memory at the receiver
side compared to the basic ARQ protocols. However, the
performance of the H-ARQ protocols is substantially better
than that of the basic ARQ protocols and the performance
improvement is worth the memory increase at the receiver
side [2], [6], [7], especially with today’s cheapest and smallest
memory chips.

In wireless links formed by wireless devices with limited
power resources, power efficiency is a key research matter
in the optimization of ARQ retransmission protocols [8]–
[12]. In [8], a power control scheme was proposed for ARQ
retransmissions in down-link cellular systems in order to
minimize the total transmission power of multiple users where
each user uses constant transmission power. In [9], the power
efficiency of various ARQ protocols was discussed by taking
into account the energy consumed by the transmitting and
receiving electronic circuitry in ARQ retransmissions. Note
that in both [8] and [9], the power efficiency of ARQ protocols
was examined under the assumption of the same transmission
power level in each retransmission round. In [10], the trans-
mission power in each retransmission round was optimized
for a variety of ARQ protocols by assuming that channel state
information (CSI) is available at the transmitter side and CSI
takes values from a prescribed finite set of values. In [11], by
assuming that partial CSI is available, optimal transmission
power in each retransmission round was determined for an H-
ARQ protocol by a linear programming method that selects a
power value from a set of discrete power levels. Recently in
[12], without assuming CSI available at the transmitter side,
an optimal power transmission strategy was identified for a
basic ARQ protocol where the receiver decodes based only on
the received signal in each transmission round. It was assumed
that the channel changes independently in each retransmission
round. A necessary and sufficient condition for the optimal
transmission power sequence was found which indicates that
power must be increasing in every retransmission. We note that
this result is not valid to slowly fading channels. More recently
in [13], without a priori CSI at the transmitter, the authors
maximized the average transmission rate for an incremental
redundancy H-ARQ protocol where the transmitter sends out
different encoded redundant parity symbols in each retransmis-

0090-6778/11$25.00 c⃝ 2011 IEEE



1868 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 7, JULY 2011

Source Destinationhsd
P1

NACK
P2

P3

NACK

PL
NACK

Fig. 1. Illustration of a hybrid-ARQ protocol with transmission power 𝑃𝑙

in the 𝑙th (re-)transmission round, 1 ≤ 𝑙 ≤ 𝐿.

sion round. The average transmission rate maximization under
optimal power assignment was also formulated and numerical
results were presented for an incremental redundancy H-ARQ
protocol with one maximum retransmission.

In this work, we consider advanced H-ARQ transmission
protocols in which a destination node may decode an infor-
mation packet by combining all received signals from previous
(re-)transmission rounds to increase detection reliability. We
assume that the source-destination channel experiences quasi-
static Rayleigh fading, i.e. the channel does not change during
retransmissions of the same information packet and it may
change independently when transmitting a new information
packet. Our goal is to find the optimal power assignment
strategy that minimizes the average total transmission power
for any given targeted outage probability. First, we derive
a set of equations that describe the optimal transmission
power values in H-ARQ retransmission rounds. Then, a simple
recursive algorithm is developed to exactly calculate the op-
timal transmission power level for each retransmission round.
Interestingly, it turns out that the optimal transmission power
assignment sequence is neither increasing nor decreasing;
its form depends on given total power budget and targeted
outage performance levels. This is fundamentally different
from the case in [12] that the optimal transmission power must
be increasing in retransmissions in the fast fading scenario
(i.e. the channel changes independently in each retransmis-
sion round). To reduce calculation complexity and obtain
more insight understanding of the optimal power assignment
strategy, we also develop an approximation to the optimal
power sequence that is close to the numerically calculated
exact result. The tight approximation shows that the optimal
transmission power in each retransmission round is a func-
tion of 𝑃1 (the transmission power in the first round) in a
polynomial form. The optimal power assignment values also
reveal that the conventional equal-power assignment (using the
same transmission power in all retransmission rounds) is far
from optimal. As an example, for a targeted outage probability
of 10−3 and maximum number of transmissions 𝐿 = 2, the
average total transmission power based on the optimal power
assignment is 9 dB less than that of using the common equal-
power scheme. We also observe that the larger the maximum
number of retransmissions allowed in the H-ARQ protocol
or the lower the required outage probabilities, the more
power savings the optimal power assignment strategy offers.
Substantial numerical and simulation results are presented to

illustrate the theoretical development.
The rest of the paper is organized as follows. In Section

II, we review briefly the H-ARQ transmission scheme and
formulate the power assignment optimization problem. In
Section III, we find the optimal power assignment strategy for
the H-ARQ protocol and present an exact recursive calculation
algorithm. In Section IV, we develop a simple approximation
of the optimal power assignment sequence and compare it with
the exact calculation result. Numerical and simulation studies
are carried out in Section V to compare the performance of
the equal and optimal power assignment strategies. Finally,
some conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an H-ARQ transmission protocol implemented
between a source node and a destination node as illustrated in
Fig. 1. Assume that 𝐿 is the number of retransmission rounds
allowed in the H-ARQ protocol. The H-ARQ transmission
scheme operates as follows. First, the source transmits an
information packet to the destination and the destination
indicates success or failure of receiving the packet by feed-
ing back a single bit of acknowledge (ACK) or negative-
acknowledgement (NACK), respectively. The feedback chan-
nel is assumed error-free. Then, if a NACK is received by
the source and the maximum number of retransmissions 𝐿 is
not reached, the source retransmits the packet at a potentially
different transmission power to be determined/optimized. If an
ACK is received by the source or the maximum retransmission
number 𝐿 is reached, the source begins transmission of a new
information packet. In each retransmission round, the destina-
tion attempts to decode an information packet by combining
received signals from all previous transmission rounds by the
standard maximal-ratio-combining (MRC) technique [14]. If
the destination still cannot decode an information packet after
𝐿 (re)transmission rounds, then an outage is declared which
means that the signal-to-noise ratio (SNR) of the combined
received signals at the destination is below a required SNR.

The H-ARQ transmission scheme can be modeled as fol-
lows. With 𝐿 maximum retransmission rounds allowed in the
H-ARQ protocol, the base-band received signal 𝑦𝑠𝑑,𝑙 at the
destination at the 𝑙th transmission round can be written as

𝑦𝑠𝑑,𝑙 =
√
𝑃𝑙 ℎ𝑠𝑑 𝑥𝑠 + 𝜂𝑠𝑑,𝑙, 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝐿, (1)

where 𝑥𝑠 is the transmitted information symbol from the
source, 𝑃𝑙 is the transmission power used by the source at the
𝑙th transmission round, ℎ𝑠𝑑 is the source-destination channel
coefficient, and 𝜂𝑠𝑑,𝑙 is additive noise at the 𝑙th round. The
channel coefficient ℎ𝑠𝑑 is modeled as zero-mean complex
Gaussian random variable with variance 𝜎2𝑠𝑑. The channel is
assumed to be quasi-static, i.e. the channel does not change
during retransmissions of the same information packet and it
may change independently when a new information packet
is transmitted. The source-destination channel coefficient is
assumed to be known at the receiver side, but unknown at
the transmitter side. The additive noise contribution 𝜂𝑠𝑑,𝑙 is
modeled as a zero-mean complex Gaussian random variable
with variance 𝒩0.

At the destination side, the receiving node combines the
received signals from all previous retransmission rounds and
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jointly decodes the information packet based on the MRC
combining technique [14]. Note that the MRC combining
is applied over base-band symbol-level signals in (1) before
decoding an entire information packet. With the assumption
that the channel does not change in retransmissions of the
same information packet, the SNR of the combined signal at
the destination at the 𝑙th (1 ≤ 𝑙 ≤ 𝐿) retransmission round
can be given as [14], [15]

𝛾𝑠𝑑,𝑙 =

∑𝑙
𝑖=1 𝑃𝑖∣ℎ𝑠𝑑∣2∣𝑥𝑠∣2

𝒩0
. (2)

Without loss of generality, let us assume the average power of
the transmitted information symbol is 1, then we have 𝛾𝑠𝑑,𝑙 =∑𝑙

𝑖=1 𝑃𝑖∣ℎ𝑠𝑑∣2
𝒩0

. Since ∣ℎ𝑠𝑑∣ follows a Rayleigh distribution with
mean zero and variance 𝜎2𝑠𝑑, so for any targeted SNR 𝛾0, the
probability of the event that the destination cannot decode
correctly after 𝑙 transmission rounds can be calculated as

𝑝𝑜𝑢𝑡,𝑙 = Pr [𝛾𝑠𝑑,𝑙 < 𝛾0] = 1− 𝑒−
𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙
𝑖=1

𝑃𝑖 . (3)

Set 𝑝𝑜𝑢𝑡,0 = 1. Then, the probability that the H-ARQ protocol
stops successfully at the 𝑙th, 1 ≤ 𝑙 < 𝐿, transmission round is
𝑝𝑜𝑢𝑡,𝑙−1 − 𝑝𝑜𝑢𝑡,𝑙, which means the destination cannot decode
correctly at the (𝑙− 1)th round, but succeeds at the 𝑙th round.

Our goal is to find an optimal power assignment sequence
P = [𝑃1, 𝑃2, ..., 𝑃𝐿] for the H-ARQ protocol such that under
a targeted outage probability 𝑝0, the average total transmission
power for the protocol to deliver an information packet is
minimized. Since the probability that the protocol succeeds
exactly at the 𝑙th (1 ≤ 𝑙 ≤ 𝐿 − 1) round is 𝑝𝑜𝑢𝑡,𝑙−1 − 𝑝𝑜𝑢𝑡,𝑙

and the corresponding total transmission power is 𝑃1 + 𝑃2 +
⋅ ⋅ ⋅+𝑃𝑙, so the average total transmission power of the H-ARQ
protocol can be expressed as

𝑃 =

𝐿−1∑
𝑙=1

(
𝑝𝑜𝑢𝑡,𝑙−1 − 𝑝𝑜𝑢𝑡,𝑙) 𝑙∑

𝑖=1

𝑃𝑖 + 𝑝
𝑜𝑢𝑡,𝐿−1

𝐿∑
𝑖=1

𝑃𝑖. (4)

Note that the last term in (4) is due to the fact that the protocol
stops retransmissions after the 𝐿th round no matter whether
decoding at the 𝐿th round is successful or not. For the H-ARQ
protocol with a targeted outage probability 𝑝0, the problem
of finding optimal power assignment can be formulated as
follows:

min 𝑃 with respect to 𝑃1, 𝑃2, ⋅ ⋅ ⋅ , 𝑃𝐿 ≥ 0

subject to 𝑝𝑜𝑢𝑡,𝐿 ≤ 𝑝0 (5)

where 𝑃 is specified in (4).

III. OPTIMAL TRANSMISSION POWER ASSIGNMENT

In this section, we investigate the optimal power assignment
strategy for the H-ARQ protocol to minimize the average
total transmission power. We obtain a set of equations that
describe the optimal transmission power values, and then
develop a recursive algorithm to exactly calculate the optimal
transmission power level for each retransmission round.

The average total transmission power in (4) can be rewritten
by switching the summation order (between the indices 𝑙 and

𝑖) as follows

𝑃 =

𝐿∑
𝑖=1

𝑃𝑖

[
𝐿−1∑
𝑙=𝑖

(
𝑝𝑜𝑢𝑡,𝑙−1 − 𝑝𝑜𝑢𝑡,𝑙)+ 𝑝𝑜𝑢𝑡,𝐿−1

]
(6)

where we first consider the summation by enumerating the
index 𝑖 from 1 to 𝐿, then consider the summation index 𝑙
(𝑖 ≤ 𝑙 ≤ 𝐿− 1). Since for each 𝑖,

∑𝐿−1
𝑙=𝑖 (𝑝𝑜𝑢𝑡,𝑙−1 − 𝑝𝑜𝑢𝑡,𝑙) =

𝑝𝑜𝑢𝑡,𝑖−1 − 𝑝𝑜𝑢𝑡,𝐿−1, so the average total transmission power
can be represented as

𝑃 = 𝑃1 +

𝐿∑
𝑙=2

𝑃𝑙 𝑝
𝑜𝑢𝑡,𝑙−1. (7)

Moreover, the constraint in (5) means that with a targeted
SNR 𝛾0, the outage probability of the H-ARQ protocol with 𝐿
retransmissions should not be larger than the specified outage
probability value 𝑝0, i.e.

𝑝𝑜𝑢𝑡,𝐿 = 1− 𝑒−
𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝐿
𝑖=1

𝑃𝑖 ≤ 𝑝0. (8)

Denote 𝑃0
△
= 𝛾0𝒩0

𝜎2
𝑠𝑑ln 1

1−𝑝0

, then the constraint is equivalent to

𝐿∑
𝑙=1

𝑃𝑙 ≥ 𝑃0 (9)

and the optimization problem in (5) can be further specified
as

min𝑃1,⋅⋅⋅ ,𝑃𝐿≥0 𝑃 = 𝑃1 +
𝐿∑

𝑙=2

𝑃𝑙

[
1− 𝑒−

𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑃𝑖

]

subject to
𝐿∑

𝑙=1

𝑃𝑙 ≥ 𝑃0. (10)

Next, we relax temporarily the non-negative condition on
𝑃𝑙, 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝐿, and consider the sum-power constraint in
(10) with equality in order to consider a Lagrange multiplier
method to solve the optimization problem. We will prove
later that the obtained solution is indeed optimal under the
constraint in (10) and it satisfies the non-negative condition.
Let us form a Lagrangian objective function as

ℒ (P, 𝜆) = 𝑃1+

𝐿∑
𝑙=2

𝑃𝑙

[
1− 𝑒−

𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑃𝑖

]
+𝜆

[ 𝐿∑
𝑙=1

𝑃𝑙−𝑃0

]
.

(11)
Taking the derivative of ℒ (P, 𝜆) with respect to 𝜆 and setting
it equal to zero, we have the power constraint as

∑𝐿
𝑙=1 𝑃𝑙 −

𝑃0 = 0. The derivatives of ℒ (P, 𝜆) with respect to 𝑃𝑘 are

∂ℒ
∂𝑃1

= 1−
𝐿∑
𝑙=2

𝑃𝑙𝛾0𝒩0

𝜎2𝑠𝑑
(∑𝑙−1

𝑖=1 𝑃𝑖

)2 𝑒−
𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑃𝑖 + 𝜆, (12)

∂ℒ
∂𝑃𝑘

=

[
1− 𝑒−

𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑘−1
𝑖=1

𝑃𝑖

]

−
𝐿∑

𝑙=𝑘+1

𝑃𝑙𝛾0𝒩0

𝜎2𝑠𝑑
(∑𝑙−1

𝑖=1 𝑃𝑖

)2 𝑒−
𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑃𝑖 + 𝜆, (13)

𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝐿− 1,

∂ℒ
∂𝑃𝐿

= 1− 𝑒−
𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝐿−1
𝑖=1

𝑃𝑖 + 𝜆. (14)
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Based on ∂ℒ
∂𝑃1

= 0 and ∂ℒ
∂𝑃2

= 0, we have

∂ℒ
∂𝑃1

− ∂ℒ
∂𝑃2

=

[
1− 𝑃2𝛾0𝒩0

𝜎2𝑠𝑑𝑃
2
1

]
𝑒
− 𝛾0𝒩0

𝜎2
𝑠𝑑

𝑃1 = 0, (15)

which implies

𝑃2 =
𝜎2𝑠𝑑𝑃

2
1

𝛾0𝒩0
. (16)

For any 𝑘 = 3, 4, ⋅ ⋅ ⋅ , 𝐿, according to ∂ℒ
∂𝑃𝑘−1

= 0 and ∂ℒ
∂𝑃𝑘

=
0, we have

0 =
∂ℒ

∂𝑃𝑘−1
− ∂ℒ
∂𝑃𝑘

= − 𝑒
− 𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑘−2
𝑖=1

𝑃𝑖

+

[
1− 𝑃𝑘𝛾0𝒩0

𝜎2𝑠𝑑
(∑𝑘−1

𝑖=1 𝑃𝑖

)2
]
𝑒
− 𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑘−1
𝑖=1

𝑃𝑖 (17)

which means

𝑃𝑘 =
𝜎2𝑠𝑑(

∑𝑘−1
𝑖=1 𝑃𝑖)

2

𝛾0𝒩0

[
1− 𝑒

− 𝑃𝑘−1𝛾0𝒩0

𝜎2
𝑠𝑑(

∑𝑘−1
𝑖=1

𝑃𝑖)(
∑𝑘−2

𝑖=1
𝑃𝑖)

]
, (18)

for any 𝑘 = 3, 4, ⋅ ⋅ ⋅ , 𝐿. We can easily verify that the
Lagrangian solutions 𝑃2, 𝑃3, ⋅ ⋅ ⋅ , 𝑃𝐿 in (16) and (18) are
positive.

In the following, we would like to show that the average
total transmission power 𝑃 cannot be further minimized with
strict inequality in (10). If there exists a power sequence
𝑃 ∗
1 , 𝑃

∗
2 , ⋅ ⋅ ⋅ , 𝑃 ∗

𝐿 such that 𝑃 ∗
1 + 𝑃 ∗

2 + ⋅ ⋅ ⋅ + 𝑃 ∗
𝐿 > 𝑃0 and

the average total transmission power 𝑃 is minimized, then let
us consider another power sequence

𝑃𝑘 = 𝑟𝑃 ∗
𝑘 , 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿, (19)

in which 𝑟 is an arbitrary number satisfying

𝑟 ≥ 𝑃0

𝑃 ∗
1 + 𝑃 ∗

2 + ⋅ ⋅ ⋅+ 𝑃 ∗
𝐿

. (20)

We can see that the new power sequence 𝑃1, 𝑃2, ⋅ ⋅ ⋅ , 𝑃𝐿

satisfies the power constraint in (10). With the new power
sequence, the resulting average total transmission power is

𝑓(𝑟)
△
= 𝑃1 +

𝐿∑
𝑙=2

𝑃𝑙

[
1− 𝑒−

𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑃𝑖

]

= 𝑟𝑃 ∗
1 +

𝐿∑
𝑙=2

𝑟𝑃 ∗
𝑙

[
1− 𝑒−

𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑟𝑃∗
𝑖

]
, (21)

which is a function of 𝑟. Taking derivative of 𝑓(𝑟) with respect
to 𝑟, we have

∂𝑓(𝑟)

∂𝑟
=

𝐿∑
𝑙=1

𝑃 ∗
𝑙 −

𝐿∑
𝑙=2

𝑃 ∗
𝑙

[
1+

𝛾0𝒩0

𝜎2𝑠𝑑
∑𝑙−1

𝑖=1 𝑟𝑃
∗
𝑖

]
𝑒
− 𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑟𝑃∗
𝑖 .

(22)
Since 𝑒−𝑥(1 + 𝑥) < 1 for any positive 𝑥, so in (22),[

1 +
𝛾0𝒩0

𝜎2𝑠𝑑
∑𝑙−1

𝑖=1 𝑟𝑃
∗
𝑖

]
𝑒
− 𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑟𝑃∗
𝑖 < 1. (23)

Thus, we have

∂𝑓(𝑟)

∂𝑟
>

𝐿∑
𝑙=1

𝑃 ∗
𝑙 −

𝐿∑
𝑙=2

𝑃 ∗
𝑙 = 𝑃 ∗

1 > 0, (24)

which means that 𝑓(𝑟) is an increasing function for any
𝑟 ≥ 𝑃0

𝑃∗
1 +𝑃∗

2 +⋅⋅⋅+𝑃∗
𝐿
, and the minimum of 𝑓(𝑟) is achieved

when 𝑟 = 𝑃0

𝑃∗
1 +𝑃∗

2 +⋅⋅⋅+𝑃∗
𝐿
. It implies that the average total

transmission power resulting from the new power sequence
with 𝑟 = 𝑃0

𝑃∗
1 +𝑃∗

2 +⋅⋅⋅+𝑃∗
𝐿
(< 1) is less than that based on

the power sequence 𝑃 ∗
1 , 𝑃

∗
2 , ⋅ ⋅ ⋅ , 𝑃 ∗

𝐿. This is contradictory
to the assumption that the power sequence 𝑃 ∗

1 , 𝑃
∗
2 , ⋅ ⋅ ⋅ , 𝑃 ∗

𝐿

minimizes the average total transmission power 𝑃 . Therefore,
the minimum average total transmission power 𝑃 can be
achieved at the boundary of the constraint (with equality) in
(10). We note that with 𝑟 = 𝑃0

𝑃∗
1 +𝑃∗

2 +⋅⋅⋅+𝑃∗
𝐿
, the new power

sequence satisfies

𝑃1 + 𝑃2 + ⋅ ⋅ ⋅+ 𝑃𝐿 = 𝑃0, (25)

which is the boundary of the constraint in (10).
We note that in general a Lagrangian solution may not

guarantee global optimality, i.e. it may lead to a local minima
or maxima. Fortunately, the Lagrangian solution in (16) and
(18) leads to a global minima as explained as follows. From
the Lagrangian solution in (16) and (18) and the total power
constraint 𝑃1 + 𝑃2 + ⋅ ⋅ ⋅+ 𝑃𝐿 = 𝑃0, we can see that there is
only one unique power sequence 𝑃1, 𝑃2, ⋅ ⋅ ⋅ , 𝑃𝐿 that results
from the Lagrangian solution. So, the unique power sequence
guarantees the global optimality which, however, can be either
global minima or maxima. We further examine that with a triv-
ial power assignment 𝑃1 = 𝑃0, 𝑃2 = 𝑃3 = ⋅ ⋅ ⋅ = 𝑃𝐿 = 0, the
resulting average total transmission power is 𝑃 = 𝑃0, which is
larger than the average total transmission power resulting from
the power sequence associated with the Lagrangian solution.
Therefore, the unique power sequence from the Lagrangian
solution guarantees the global minima. We summarize the
above discussion in the following theorem.

Theorem 1: In the H-ARQ transmission protocol, to mini-
mize the average total transmission power, the optimal trans-
mission power 𝑃𝑘 at the 𝑘th, 1 ≤ 𝑘 ≤ 𝐿, transmission round
must satisfy the following

𝑃2 =
𝜎2𝑠𝑑𝑃

2
1

𝛾0𝒩0
, (26)

𝑃𝑘 =
𝜎2𝑠𝑑(

∑𝑘−1
𝑖=1 𝑃𝑖)

2

𝛾0𝒩0

[
1− 𝑒

− 𝑃𝑘−1𝛾0𝒩0

𝜎2
𝑠𝑑(

∑𝑘−1
𝑖=1

𝑃𝑖)(
∑𝑘−2

𝑖=1
𝑃𝑖)

]
, (27)

for 𝑘 = 3, 4, ⋅ ⋅ ⋅ , 𝐿, and

𝑃1 + 𝑃2 + ⋅ ⋅ ⋅+ 𝑃𝐿 = 𝑃0, (28)

where 𝑃0
△
= 𝛾0𝒩0

𝜎2
𝑠𝑑ln 1

1−𝑝0

, 𝛾0 is the required SNR for correct

decoding, 𝒩0 is the additive white noise variance, 𝜎2𝑠𝑑 is
the Rayleigh fading variance, and 𝑝0 is the targeted H-ARQ
outage probability. □

From Theorem 1, we can see that the optimal transmis-
sion power sequence is uniquely determined by the set of
equations (26)–(28). The optimal transmission power level
for each (re)transmission round can be calculated recursively.
According to (26) and (27), for any 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝐿, the
optimal transmission power value 𝑃𝑘 can be calculated based
on 𝑃1, 𝑃2, ⋅ ⋅ ⋅ , 𝑃𝑘−1. So for any given power 𝑃1, all other
transmission power 𝑃𝑘, 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝐿, can be subsequently
determined. The optimal initial power 𝑃1 can be numerically
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TABLE I: Algorithm to determine the optimal power assignment sequence 𝑃𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿
𝑆𝑡𝑒𝑝 1 : 𝐼𝑛𝑝𝑢𝑡 𝛾0, 𝑝0, 𝜎

2
𝑠𝑑,𝒩0. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑃0 = 𝛾0𝒩0

𝜎2
𝑠𝑑 ln 1

1−𝑝0

.

𝑆𝑡𝑒𝑝 2 : 𝑆𝑒𝑡 𝑙𝑜𝑤𝑒𝑟 = 0 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 = 𝑃0.

𝑆𝑡𝑒𝑝 3 : 𝐿𝑒𝑡 𝑃1 = (𝑙𝑜𝑤𝑒𝑟 + 𝑢𝑝𝑝𝑒𝑟)/2, 𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒

𝑃2 =
𝜎2
𝑠𝑑𝑃

2
1

𝛾0𝒩0
,

𝑃𝑘 =
𝜎2
𝑠𝑑(
∑𝑘−1

𝑖=1 𝑃𝑖)
2

𝛾0𝒩0

[
1− 𝑒

− 𝑃𝑘−1𝛾0𝒩0

𝜎2
𝑠𝑑(

∑𝑘−1
𝑖=1

𝑃𝑖)(
∑𝑘−2

𝑖=1
𝑃𝑖)

]
,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 = 3, 4, ⋅ ⋅ ⋅ , 𝐿.

𝑆𝑡𝑒𝑝 4 : 𝐶ℎ𝑒𝑐𝑘 𝑖𝑓 𝑎𝑏𝑠(𝑃1 + 𝑃2 + ⋅ ⋅ ⋅+ 𝑃𝐿 − 𝑃0) < 𝜖(= 0.001), 𝑡ℎ𝑒𝑛 𝑠𝑡𝑜𝑝
𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑃1, 𝑃2, ⋅ ⋅ ⋅ , 𝑃𝐿; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑖𝑓 𝑃1 + 𝑃2 + ⋅ ⋅ ⋅+ 𝑃𝐿 − 𝑃0 < 0, 𝑠𝑒𝑡 𝑙𝑜𝑤𝑒𝑟 = 𝑃1;
𝑖𝑓 𝑃1 + 𝑃2 + ⋅ ⋅ ⋅+ 𝑃𝐿 − 𝑃0 > 0, 𝑠𝑒𝑡 𝑢𝑝𝑝𝑒𝑟 = 𝑃1;

𝑎𝑛𝑑 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 3.

found based on (28) by the Newton method. A complete algo-
rithm to recursively determine the optimal power assignment
sequence 𝑃𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿, is detailed in Table I.

When 𝐿 = 2, we have a closed-form solution for the
optimal power sequence. In this case, 𝑃1 + 𝑃2 = 𝑃0 and
𝑃2 =

𝜎2
𝑠𝑑𝑃

2
1

𝛾0𝒩0
. By solving the two equations, the optimal

transmission power 𝑃1 and 𝑃2 are given by

𝑃1 =
2𝑃0

1 +
√
1 +

4𝜎2
𝑠𝑑𝑃0

𝛾0𝒩0

, (29)

𝑃2 =
𝛾0𝒩0

4𝜎2𝑠𝑑

⎛
⎝
√
1 +

4𝜎2𝑠𝑑𝑃0

𝛾0𝒩0
− 1

⎞
⎠

2

. (30)

From (29) and (30), we can see that if 𝛾0𝒩0

𝜎2
𝑠𝑑

> 𝑃0

2 , then

𝑃1 >
𝑃0

2 , which implies that 𝑃1 > 𝑃2, i.e. the power assigned
in the first transmission round should be larger than that for
the second retransmission round. The condition 𝛾0𝒩0

𝜎2
𝑠𝑑

> 𝑃0

2
means

𝛾0𝒩0

𝜎2𝑠𝑑
>

1

2

𝛾0𝒩0

𝜎2𝑠𝑑ln
1

1−𝑝0

,

which is true when 𝑝0 > 1 − 𝑒−
1
2 ≈ 0.3935. On the other

hand, if 𝛾0𝒩0

𝜎2
𝑠𝑑

< 𝑃0

2 (𝑖.𝑒. 𝑝0 < 1 − 𝑒−
1
2 ), then 𝑃1 <

𝑃0

2 ,
which means 𝑃1 should be less than 𝑃2 (an opposite power
assignment strategy compared to that of 𝑃1 > 𝑃2). Especially,
when the targeted outage probability is 𝑝0 = 1 − 𝑒−

1
2 , the

optimal power assignment is 𝑃1 = 𝑃2, i.e. an equal power
assignment, no matter what are the required SNR 𝛾0, the
noise variance 𝒩0 and the channel variance 𝜎2𝑠𝑑. From the
case of 𝐿 = 2, we can see that the optimal power can be
assigned either in an increasing, decreasing or equal way
depending on the targeted outage probability performance of
the H-ARQ protocol. This is different from the case in [12]
where the optimal transmission power must be increasing in
every retransmission.

For the general case of 𝐿 > 2, numerical results (shown
in Figs. 2-4 in Section IV) reveal that the optimal power
assignment sequence can be neither increasing nor decreasing.
Actually, from the theorem we can see that when 𝑃1 <

𝛾0𝒩0

𝜎2
𝑠𝑑

,

the optimal transmission power 𝑃2 is less than 𝑃1 according
to (26). On the other hand, when 𝑃1 >

𝛾0𝒩0

𝜎2
𝑠𝑑

, the optimal
transmission power 𝑃2 is larger than 𝑃1. This phenomenon
is fundamentally different from the case in [12] where the
optimal transmission power sequence is always increasing.

We note that if 𝑃1 >
𝛾0𝒩0

𝜎2
𝑠𝑑

, then the optimal power assign-
ment sequence in Theorem 1 is monotonically increasing, i.e.
𝑃1 < 𝑃2 < ⋅ ⋅ ⋅ < 𝑃𝐿. From (26), it is easy to see that 𝑃2 > 𝑃1

in this case. For any 𝑘 = 3, 4, ⋅ ⋅ ⋅ , 𝐿, since 1−𝑒−𝑥 > 𝑥− 1
2𝑥

2

for any 𝑥 > 01, so from (27) we have

𝑃𝑘 >
𝜎2𝑠𝑑(

∑𝑘−1
𝑖=1 𝑃𝑖)

2

𝛾0𝒩0

⎡
⎣ 𝑃𝑘−1𝛾0𝒩0

𝜎2𝑠𝑑

(∑𝑘−1
𝑖=1 𝑃𝑖

)(∑𝑘−2
𝑖=1 𝑃𝑖

)

− 𝑃 2
𝑘−1(𝛾0𝒩0)

2

2𝜎4𝑠𝑑

(∑𝑘−1
𝑖=1 𝑃𝑖

)2 (∑𝑘−2
𝑖=1 𝑃𝑖

)2
⎤
⎥⎦

=

⎡
⎢⎣1 + 𝑃𝑘−1∑𝑘−2

𝑖=1 𝑃𝑖

− 𝑃𝑘−1𝛾0𝒩0

2𝜎2𝑠𝑑

(∑𝑘−2
𝑖=1 𝑃𝑖

)2
⎤
⎥⎦𝑃𝑘−1. (31)

Since 𝛾0𝒩0

𝜎2
𝑠𝑑(
∑𝑘−2

𝑖=1 𝑃𝑖)
< 𝛾0𝒩0

𝜎2
𝑠𝑑𝑃1

< 1, it is easy to see that

𝑃𝑘−1∑𝑘−2
𝑖=1 𝑃𝑖

− 𝑃𝑘−1𝛾0𝒩0

2𝜎2𝑠𝑑

(∑𝑘−2
𝑖=1 𝑃𝑖

)2 =

𝑃𝑘−1∑𝑘−2
𝑖=1 𝑃𝑖

⎡
⎣1− 𝛾0𝒩0

2𝜎2𝑠𝑑

(∑𝑘−2
𝑖=1 𝑃𝑖

)
⎤
⎦ > 0.

(32)

Combining (31) and (32), we conclude that 𝑃𝑘 > 𝑃𝑘−1 for
any 𝑘 = 3, 4, ⋅ ⋅ ⋅ , 𝐿. Thus, the optimal power assignment
sequence in Theorem 1 is monotonically increasing in this

1In this footnote, we would like to prove that 𝐺(𝑥)
△
= (1− 𝑒−𝑥)− (𝑥−

1
2
𝑥2) > 0 for any 𝑥 > 0. We can see that 𝐺′(𝑥) = 𝑒−𝑥 + 𝑥 − 1 and

𝐺′′(𝑥) = −𝑒−𝑥 + 1. Since 𝐺′(0) = 0 and 𝐺′′(𝑥) > 0 for any 𝑥 > 0, so
𝐺′(𝑥) > 0 for any 𝑥 > 0, i.e. 𝐺(𝑥) is monotonically increasing for 𝑥 > 0.
With 𝐺(0) = 0, we conclude that 𝐺(𝑥) > 0 for any 𝑥 > 0.
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case. Actually, in this case the optimal power assignment
sequence increases as a function of 𝑃1 roughly in a polynomial
way, which is shown in the next section.

IV. APPROXIMATION OF THE OPTIMAL POWER SEQUENCE

To reduce calculation complexity in the optimal power
assignment, we present in this section a simple and tight
approximation for the optimal transmission power sequence.
The tight approximation allows us to get more insight un-
derstanding of the optimal power assignment strategy for the
H-ARQ protocol.

Since 1− 𝑒−𝑥 ≈ 𝑥 for small 𝑥, so for any 𝑘 = 3, 4, ⋅ ⋅ ⋅ , 𝐿,
the optimal transmission power 𝑃𝑘 in (27) can be approxi-
mated as

𝑃𝑘 ≈ 𝜎2𝑠𝑑(
∑𝑘−1

𝑖=1 𝑃𝑖)
2

𝛾0𝒩0
× 𝑃𝑘−1𝛾0𝒩0

𝜎2𝑠𝑑(
∑𝑘−1

𝑖=1 𝑃𝑖)(
∑𝑘−2

𝑖=1 𝑃𝑖)
(33)

= 𝑃𝑘−1 +
𝑃 2
𝑘−1∑𝑘−2

𝑖=1 𝑃𝑖

. (34)

The approximation in (33) is tight when 𝑃𝑘−1𝛾0𝒩0

𝜎2
𝑠𝑑(
∑𝑘−1

𝑖=1 𝑃𝑖)(
∑𝑘−2

𝑖=1 𝑃𝑖)

is small and it is true in general. We can verify that when
𝑘 = 3,

𝑃𝑘−1𝛾0𝒩0

𝜎2𝑠𝑑(
∑𝑘−1

𝑖=1 𝑃𝑖)(
∑𝑘−2

𝑖=1 𝑃𝑖)
=

1

1 +
𝜎2
𝑠𝑑

𝛾0𝒩0
𝑃1

which is strictly less than 1, and it becomes smaller when the
power 𝑃1 is larger. When 𝑘 > 3,

𝑃𝑘−1𝛾0𝒩0

𝜎2𝑠𝑑(
∑𝑘−1

𝑖=1 𝑃𝑖)(
∑𝑘−2

𝑖=1 𝑃𝑖)
<

𝛾0𝒩0

𝜎2
𝑠𝑑∑𝑘−2

𝑖=1 𝑃𝑖

which is small when any of 𝑃1, 𝑃2, ⋅ ⋅ ⋅ , 𝑃𝑘−2 is large.
When 𝑘 = 3, substituting 𝑃2 =

𝜎2
𝑠𝑑𝑃

2
1

𝛾0𝒩0
into (34), we have

𝑃3 ≈ 𝑃2 +
𝑃 2
2

𝑃1
=
𝜎2𝑠𝑑𝑃

2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)
. (35)

When 𝑘 = 4, substituting 𝑃2 =
𝜎2
𝑠𝑑𝑃

2
1

𝛾0𝒩0
and the above

approximation of 𝑃3 into (34), we can approximate 𝑃4 as

𝑃4 ≈ 𝑃3 +
𝑃 2
3

𝑃1 + 𝑃2
=
𝜎2𝑠𝑑𝑃

2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)2

. (36)

Assume that for any 𝑘 ≤ 𝑘0(> 2), it is true that

𝑃𝑘 ≈ 𝜎2𝑠𝑑𝑃
2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝑘−2

, 𝑘 = 3, 4, ⋅ ⋅ ⋅ , 𝑘0,
(37)

then for 𝑘 = 𝑘0 + 1, we have

𝑃𝑘0+1 ≈ 𝑃𝑘0 +
𝑃 2
𝑘0∑𝑘0−1

𝑖=1 𝑃𝑖

=
𝜎2𝑠𝑑𝑃

2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝑘0−2

+

(
𝜎2
𝑠𝑑𝑃

2
1

𝛾0𝒩0

)2 (
1 +

𝜎2
𝑠𝑑𝑃1

𝛾0𝒩0

)2𝑘0−4

𝑃1 +
𝜎2
𝑠𝑑𝑃

2
1

𝛾0𝒩0

∑𝑘0−1
𝑖=2

(
1 +

𝜎2
𝑠𝑑𝑃1

𝛾0𝒩0

)𝑖−2

=
𝜎2𝑠𝑑𝑃

2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)(𝑘0+1)−2

,

i.e. the result in (37) is also true for 𝑘 = 𝑘0 + 1. Thus, by
induction we can conclude that for any 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝐿, we
have

𝑃𝑘 ≈ 𝜎2𝑠𝑑𝑃
2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝑘−2

. (38)

Based on the approximation and the sum-power constraint
in (28), we have a constraint on the optimal power 𝑃1 as
follows

𝑃1 +

𝐿∑
𝑘=2

𝜎2𝑠𝑑𝑃
2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝑘−2

= 𝑃0 (39)

or equivalently

𝑃1

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝐿

= 𝑃0. (40)

The left-hand side of the equation (40) is an increasing
function in terms of power 𝑃1, so there is a unique solution
for the equation. Thus, the optimal power 𝑃1 can be easily
determined based on the equation in (40) by using the Newton
method. We summarize the above discussion in the form of
the following theorem.

Theorem 2: In the H-ARQ transmission protocol, the op-
timal transmission power at each round can be approximated
as

𝑃𝑘 ≈ 𝜎2𝑠𝑑𝑃
2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝑘−2

(41)

for 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝐿 where 𝑃1 is determined by the equation

𝑃1

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝐿−1

= 𝑃0, (42)

where 𝑃0 = 𝛾0𝒩0

𝜎2
𝑠𝑑 ln 1

1−𝑝0

. □
From Theorem 2, we observe that for any 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝐿,

the optimal transmission power 𝑃𝑘 can be approximated as
a function of 𝑃1. The optimal transmission power 𝑃1 can
be directly determined by the equation (42), then all other
optimal transmission power values 𝑃𝑘, 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝐿 can
be obtained immediately based on the closed-form expression
in (41). The procedure is detailed in the algorithm in Table II.
We can see that the calculation complexity of the algorithm
in Table II is much less than that of the recursive algorithm
in Table I. The approximation in Theorem 2 provides some
insight understanding that the optimal transmission power in
each retransmission round varies in term of 𝑃1 (the transmis-
sion power in the first round) in a polynomial way.

When 𝐿 = 2, the constraint in (42) is reduced to
𝑃1

(
1 +

𝜎2
𝑠𝑑𝑃1

𝛾0𝒩0

)
= 𝑃0. By solving the equation, we have

the optimal power value for the first transmission round as
𝑃1 = 2𝑃0

1+

√
1+

4𝜎2
𝑠𝑑

𝑃0
𝛾0𝒩0

, which matches with the exact power

value given in (29). When 𝐿 > 2, based on the constraint
in (42), the optimal transmission power 𝑃1 can be bounded
as follows. Since the geometric mean is not greater than the
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TABLE II: Algorithm to determine the approximation of the optimal power sequence 𝑃𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿
𝑆𝑡𝑒𝑝 1 : 𝐼𝑛𝑝𝑢𝑡 𝛾0, 𝑝0, 𝜎

2
𝑠𝑑,𝒩0. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑃0 = 𝛾0𝒩0

𝜎2
𝑠𝑑 ln 1

1−𝑝0

.

𝑆𝑡𝑒𝑝 2 : 𝑆𝑒𝑡 𝑙𝑜𝑤𝑒𝑟 = 0 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 = 𝑃0.

𝑆𝑡𝑒𝑝 3 : 𝐿𝑒𝑡 𝑃1 = (𝑙𝑜𝑤𝑒𝑟 + 𝑢𝑝𝑝𝑒𝑟)/2, 𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒

𝑡𝑒𝑚𝑝 = 𝑃1

(
1 +

𝜎2
𝑠𝑑𝑃1

𝛾0𝒩0

)𝐿−1

− 𝑃0.

𝐶ℎ𝑒𝑐𝑘 𝑖𝑓 𝑎𝑏𝑠(𝑇𝑒𝑚𝑝) < 𝜖(= 0.001), 𝑡ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡
𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑃1 𝑎𝑛𝑑 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 4; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑖𝑓 𝑡𝑒𝑚𝑝 < 0, 𝑠𝑒𝑡 𝑙𝑜𝑤𝑒𝑟 = 𝑃1;
𝑖𝑓 𝑡𝑒𝑚𝑝 > 0, 𝑠𝑒𝑡 𝑢𝑝𝑝𝑒𝑟 = 𝑃1;

𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑆𝑡𝑒𝑝 3.

𝑆𝑡𝑒𝑝 4 : 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑜𝑤𝑒𝑟 𝑃𝑘 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 :

𝑃𝑘 ≈ 𝜎2
𝑠𝑑𝑃

2
1

𝛾0𝒩0

(
1 +

𝜎2
𝑠𝑑𝑃1

𝛾0𝒩0

)𝑘−2

, 𝑘 = 2, 3, ⋅ ⋅ ⋅ , 𝐿.

arithmetic mean, we have

𝜎2𝑠𝑑
𝛾0𝒩0

𝑃0 =
𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝐿−1

<

⎛
⎝ (𝐿− 1) + 𝐿

𝜎2
𝑠𝑑𝑃1

𝛾0𝒩0

𝐿

⎞
⎠

𝐿

,

so,

𝑃1 >
𝛾0𝒩0

𝜎2𝑠𝑑

[(
𝜎2𝑠𝑑𝑃0

𝛾0𝒩0

) 1
𝐿

− 𝐿− 1

𝐿

]
. (43)

On the other hand, since

𝑃0 = 𝑃1

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝐿−1

>

(
𝜎2𝑠𝑑
𝛾0𝒩0

)𝐿−1

𝑃𝐿
1 , (44)

so we have

𝑃1 <
𝛾0𝒩0

𝜎2𝑠𝑑

(
𝜎2𝑠𝑑𝑃0

𝛾0𝒩0

) 1
𝐿

. (45)

Therefore, the optimal transmission power 𝑃1 is bounded as
follows

𝛾0𝒩0

𝜎2𝑠𝑑

[(
𝜎2𝑠𝑑𝑃0

𝛾0𝒩0

) 1
𝐿

− 𝐿− 1

𝐿

]
< 𝑃1 <

𝛾0𝒩0

𝜎2𝑠𝑑

(
𝜎2𝑠𝑑𝑃0

𝛾0𝒩0

) 1
𝐿

,

(46)
in which the upper bound is tight when 𝑃0 is large. The
difference between the lower bound and the upper bound is
less than 𝛾0𝒩0

𝜎2
𝑠𝑑

.
In Figs. 2 and 3, we show comparisons of the approximation

of the optimal transmission power sequence by Theorem 2
with the exact optimized power sequence by Theorem 1.
In these two figures, we assumed that the targeted SNR is
𝛾0 = 10 dB, the required outage performance is 𝑝0 = 10−3,
𝜎2𝑠𝑑 = 1 and 𝒩0 = 1. The maximum number of transmission
rounds is 𝐿 = 3 in Fig. 2, and 𝐿 = 5 in Fig. 3. We
can see that the approximations of the optimal transmission
power values (solid line with ’∗’) match very well with those
based on exactly numerical calculation (solid line with ’∘’).
For comparison, we also include in the figures the trans-
mission power level of the equal-power assignment strategy.
We observe that in the first few (re)transmission rounds, the

optimal power assignment strategy assigns significantly less
transmission power compared to the equal-power assignment
strategy.

The optimum transmission power sequence is increasing
in both cases in Figs. 2 and 3. Actually, the optimum
transmission power sequence can be neither increasing or
deceasing, which is shown in Fig. 4. In this case, the maximum
number of retransmission rounds is 𝐿 = 10, the targeted
SNR is 𝛾0 = 10 dB and the required outage performance is
𝑝0 = 10−1. We can see that the optimal power assignment
is decreasing in the first two rounds and increasing after
that. Moreover, we observe that in this case there is a gap
between the approximations of the optimal transmission power
sequence and the exactly calculated sequence. Since when
𝑘 = 3, the term 𝑃𝑘−1𝛾0𝒩0

𝜎2
𝑠𝑑(
∑𝑘−1

𝑖=1 𝑃𝑖)(
∑𝑘−2

𝑖=1 𝑃𝑖)
= 1

1+
𝜎2
𝑠𝑑

𝑃1
𝛾0𝒩0

≈ 0.63

which is not small enough in this case, so the approximation
of the exponential term in (33) is not tight. The difference
between the approximated sequence and the exactly calcu-
lated power sequence can be more significant when the the
maximum number of retransmission rounds 𝐿 goes to infinity.
Fortunately, this is not the case in practice where a reasonable
𝐿 is normally less than 10 due to delay consideration.

Finally, based on the approximation of the optimal transmis-
sion power sequence, the average total transmission power of
the H-ARQ protocol accounting for requested retransmissions
can be approximated as follows

𝑃𝑜𝑝𝑡 ≈ 𝑃1 +

𝐿∑
𝑙=2

𝜎2𝑠𝑑𝑃
2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝑙−2

×

⎡
⎢⎣1− 𝑒

− 𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝜎2
𝑠𝑑

𝑃2
1

𝛾0𝒩0

(
1+

𝜎2
𝑠𝑑

𝑃1
𝛾0𝒩0

)𝑖−2

⎤
⎥⎦

= 𝑃1 +

𝐿∑
𝑙=2

𝜎2𝑠𝑑𝑃
2
1

𝛾0𝒩0

(
1 +

𝜎2𝑠𝑑𝑃1

𝛾0𝒩0

)𝑙−2

×
[
1− 𝑒−

𝛾0𝒩0
𝜎2
𝑠𝑑

𝑃1

(
1+

𝜎2
𝑠𝑑𝑃1

𝛾0𝒩0

)−𝑙+2]
. (47)

The approximation of the average total transmission power is
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Fig. 2. Transmission power sequence of the optimal power assignment
strategy with 𝐿 = 3, 𝛾0 = 10 dB, 𝑝0 = 10−3 .
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Fig. 3. Transmission power sequence of the optimal power assignment
strategy with 𝐿 = 5, 𝛾0 = 10 dB, 𝑝0 = 10−3 .

a function of 𝑃1. Moreover, when 𝑃1 >
𝛾0𝒩0

𝜎2
𝑠𝑑

, then using the

approximation 1 − 𝑒−𝑥 ≈ 𝑥 for small 𝑥, the average total
transmission power across requested retransmissions can be
further approximated as

𝑃𝑜𝑝𝑡 ≈ 𝑃1 +
𝐿∑

𝑙=2

𝑃1 = 𝐿𝑃1. (48)

This approximation is tight when 𝐿 is small, since 𝑃1 is
normally larger than 𝛾0𝒩0

𝜎2
𝑠𝑑

in this case. It shows that the
average total transmission power is roughly the product of
the transmission power in the first round and the number
of retransmission rounds allowed in the H-ARQ protocol. If

we approximate 𝑃1 as 𝛾0𝒩0

𝜎2
𝑠𝑑

(
𝜎2
𝑠𝑑𝑃0

𝛾0𝒩0

) 1
𝐿

based on (45), then
the average total transmission power with the optimal power
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Fig. 4. Transmission power sequence of the optimal assignment strategy
with 𝐿 = 10, 𝛾0 = 10 dB, 𝑝0 = 10−1.
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Fig. 5. Comparisons of the average total transmission power of the equal
and optimal power assignment strategies with different targeted SNRs. 𝐿 = 2,
𝑝0 = 10−3.

assignment sequence can be approximated as

𝑃𝑜𝑝𝑡 ≈ 𝐿
𝛾0𝒩0

𝜎2𝑠𝑑

(
𝜎2𝑠𝑑𝑃0

𝛾0𝒩0

) 1
𝐿

=
𝐿

(ln 1
1−𝑝0

)
1
𝐿

𝛾0𝒩0

𝜎2𝑠𝑑
. (49)

V. PERFORMANCE COMPARISONS BETWEEN THE EQUAL

AND OPTIMAL POWER ASSIGNMENTS

In this section, we compare the power efficiency of the H-
ARQ protocols with the optimal power assignment strategy
derived in this work and the conventional equal-power assign-
ment approach. In numerical calculation, we assume that the
variance of the channel ℎ𝑠𝑑 is 𝜎2𝑠𝑑 = 1 and the noise variance
is 𝒩0 = 1.

For a targeted outage probability 𝑝0, according to (9),
the equal-power assignment approach should also follow the
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Fig. 6. Comparisons of the average total transmission power of the equal
and optimal power assignment strategies with different targeted SNRs. 𝐿 = 3,
𝑝0 = 10−3.
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Fig. 7. Comparisons of the average total transmission power of the equal
and optimal power assignment strategies with different targeted SNRs. 𝐿 = 5,
𝑝0 = 10−3.

power constraint

𝐿∑
𝑙=1

𝑃𝑙 ≥ 𝑃0 =
𝛾0𝒩0

𝜎2𝑠𝑑ln
1

1−𝑝0

. (50)

Thus, the equal-power assignment is 𝑃𝑙 = 𝑃0/𝐿 for each
𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝐿. The corresponding average total transmission
power is

𝑃𝑒𝑞𝑢 = 𝑃1 +

𝐿∑
𝑙=2

𝑃0

𝐿

[
1− 𝑒

− 𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝑙−1
𝑖=1

𝑃0
𝐿

]

= 𝑃0 − 𝑃0

𝐿

𝐿∑
𝑙=2

𝑒
− 𝐿

𝑙−1
𝛾0𝒩0
𝜎2
𝑠𝑑

𝑃0 . (51)

When 𝑃0 is large, the average total transmission power of the

equal-power assignment strategy can be approximated as

𝑃𝑒𝑞𝑢 ≈ 𝑃0 − 𝑃0

𝐿

𝐿∑
𝑙=2

(
1− 𝐿

𝑙 − 1

𝛾0𝒩0

𝜎2𝑠𝑑𝑃0

)

=
𝑃0

𝐿
+
𝛾0𝒩0

𝜎2𝑠𝑑

𝐿∑
𝑙=2

1

𝑙− 1
. (52)

Therefore, the power efficiency of the optimal power as-
signment strategy compared to the equal-power assignment
approach can be quantified by the following ratio

𝑃𝑒𝑞𝑢

𝑃𝑜𝑝𝑡
=

𝑃0

𝐿 + 𝛾0𝒩0

𝜎2
𝑠𝑑

∑𝐿
𝑙=2

1
𝑙−1

𝐿 𝛾0𝒩0

𝜎2
𝑠𝑑

(
𝜎2
𝑠𝑑𝑃0

𝛾0𝒩0

) 1
𝐿

=
1

𝐿2

(
ln

1

1− 𝑝0

) 1
𝐿−1

+
1

𝐿

(
ln

1

1− 𝑝0

) 1
𝐿

𝐿∑
𝑙=2

1

𝑙 − 1
. (53)

According to ln 1
1−𝑝0

≈ 𝑝0, the ratio can be approximated as

𝑃𝑒𝑞𝑢

𝑃𝑜𝑝𝑡
≈ 𝑝

1
𝐿
0

𝐿

(
1

𝐿𝑝0
+

𝐿∑
𝑙=2

1

𝑙 − 1

)
. (54)

For small targeted outage probability 𝑝0, the ratio can be

further approximated as 𝑃𝑒𝑞𝑢

𝑃𝑜𝑝𝑡
≈ 𝑝

1
𝐿

−1

0

𝐿2 . We can see that the
smaller the targeted outage probability 𝑝0, the more power
saving the optimal power assignment strategy compared to
the equal-power assignment strategy.

For different targeted SNR 𝛾0 (from 0 dB to 40 dB), we
compare the average total transmission power of the optimal
power assignment strategy and the equal-power assignment
scheme in Figs. 5, 6, and 7 for the cases of 𝐿 = 2, 𝐿 = 3,
and 𝐿 = 5, respectively. The required outage performance of
the H-ARQ protocol is set at 𝑝0 = 10−3. When 𝐿 = 2, from
Fig. 5 we observe that the optimal power assignment saves
about 9 dB in average total transmission power compared to
the equal-power H-ARQ. When 𝐿 = 3, we can see from
Fig. 6 that the optimal power assignment shows about 10
dB gain compared to the equal-power assignment scheme.
When 𝐿 = 5, Fig. 7 shows that the optimal power assignment
strategy significantly outperforms the equal-power assignment
scheme with a performance improvement of about 11 dB.
Moreover, it is interesting to observe that in each figure, the
performance gain of the optimal power assignment strategy is
almost constant for different targeted SNR 𝛾0 (from 0 dB to 40
dB). This is consistent with the theoretical approximation 𝑃𝑒𝑞𝑢

𝑃𝑜𝑝𝑡

in (54) which does not rely on the targeted SNR 𝛾0. When
𝐿 = 2 and 𝑝0 = 10−3, the ratio in (54) is 𝑃𝑒𝑞𝑢

𝑃𝑜𝑝𝑡
= 8.99 dB

(the observed power saving in Fig. 5 is 9 dB). When 𝐿 = 3

and 𝑝0 = 10−3, the ratio in (54) is 𝑃𝑒𝑞𝑢

𝑃𝑜𝑝𝑡
= 10.48 dB (the

observed power saving in Fig. 6 is 10 dB).
We also compare the average total transmission power

required in the two power assignment strategies with different
targeted outage probability values. We assume the required
SNR is 𝛾0 = 10 dB. Figs. 8, 9 and 10 present comparison
results for the cases of 𝐿 = 2, 𝐿 = 3, and 𝐿 = 5,
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Fig. 8. Comparisons of the average total transmission power of the
equal and optimal power assignment strategies with different targeted outage
probabilities. 𝐿 = 2, 𝛾0 = 10 dB.
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Fig. 9. Comparisons of the average total transmission power of the
equal and optimal power assignment strategies with different targeted outage
probabilities. 𝐿 = 3, 𝛾0 = 10 dB.

respectively. From the three figures, we can see that for an
outage performance of 𝑝0 = 10−4, the power savings of the
optimal power assignment strategy compared to the equal-
power assignment scheme are 15 dB when 𝐿 = 2, 17 dB
when 𝐿 = 3, and 19 dB when 𝐿 = 5. The lower the required
outage probability, the more important optimization of the
power sequence becomes. Moreover, we also observe that with
the same targeted outage performance, the larger the number
of retransmission rounds allowed in the H-ARQ protocol,
the larger the performance gain between the optimal power
assignment scheme and the equal-power assignment scheme.

We also show the average total transmission power based on
the approximated optimal power sequence in the six figures.
We can see that the average total transmission power based on
the approximated power sequence matches tightly with that
from the exact optimal power sequence in each case. Note
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Fig. 10. Comparisons of the average total transmission power of the
equal and optimal power assignment strategies with different targeted outage
probabilities. 𝐿 = 5, 𝛾0 = 10 dB.

that the exact calculation of the optimal transmission power
sequence is based on Theorem 1 and the approximated power
sequence comes from Theorem 2.

VI. CONCLUSION

In this paper, we determined the optimal transmission power
assignment strategy for the H-ARQ protocol to minimize
the average total transmission power in quasi-static Rayleigh
fading channels. The optimal transmission power sequence
is described by a set of equations which allow an exact
recursive calculation of the optimal power sequence. To reduce
calculation complexity, we also developed an approximation
to the optimal power sequence that is close to the numerically
calculated exact result. It is interesting to observe that the
optimal transmission power sequence is neither increasing nor
decreasing; its form depends on given total power budget
and targeted outage performance levels. The optimal power
assignment sequence reveals that conventional equal-power
assignment is far from optimal. For example, for a targeted
outage performance of 10−5 and maximum number of trans-
missions 𝐿 = 5, the average total transmission power by the
optimum assignment is about 27 dB less than that of using
the equal-power assignment. We also observe that with the
same targeted outage performance, the larger the number of
retransmission rounds allowed in the H-ARQ protocol, the
higher the total power gain of the optimal power assignment
scheme compared to equal-power allocation. For the same
cap on retransmission rounds, the lower the required outage
probability, the higher the total power gain of the optimal
power assignment strategy over equal-power assignment.
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