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Orthogonal Space-Time Block Codes
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Abstract—Orthogonal designs have received considerable at-
tention in the development of efficient modulation and coding
methods for future multi-antenna wireless communication systems
due to their special properties. In this paper, we propose a class
of space-time block codes constructed by combining orthogonal
designs with sphere packing for an arbitrary number of transmit
antennas. The structure of the orthogonal designs is exploited to
guarantee full diversity, and sphere packing is used to improve
the coding advantage. Space-time block code construction from
block-orthogonal designs is also considered: the full-diversity
property is ensured by rotating the sphere packing underlying
the code, and the optimal rotation angle is determined for a class
of sphere packing. Code design examples are provided for two
and four transmit antennas and various transmission rates. The
simulation results show that by jointly designing the symbols in
the orthogonal designs, the performance of the block codes can be
significantly increased.

Index Terms—Diversity product, multiple antennas, multiple-
input multiple-output (MIMO) systems, orthogonal designs, space-
time block codes (STBCs), sphere packing.

I. INTRODUCTION

B Y employing multiple transmit and receive antennas
and developing appropriate space-time (ST) coding and

modulation, multiple-input multiple-output (MIMO) systems
can significantly increase data rates in wireless communica-
tions. The performance criteria for MIMO ST coding were
first derived in [1] and [2], characterizing two quantities: the
diversity advantage, which describes the asymptotic error rate
decrease as a function of the signal-to-noise ratio (SNR), and
the coding advantage, which determines the vertical shift of
the error performance curve. Since then, a large number of ST
codes have been proposed, for example, [3]–[23].

Orthogonal designs have received considerable attention in
designing space-time block codes (STBCs) for MIMO commu-
nication systems. The theory of orthogonal designs, which fo-
cuses on the construction of square matrices from real or com-
plex variables in such a way that their columns are orthogonal
to each other, has a long history in mathematics [24]. The first
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transmit diversity scheme using orthogonal designs was pro-
posed in [3] to construct STBCs for two transmit antennas from
a complex orthogonal design. The idea was extended in
[4] to nonsquare code matrices and more transmit antennas. In
[5], it was shown that for linear receivers, the orthogonal sig-
naling structure is optimal in the sense that it maximizes the re-
ceiver signal to noise ratio. Results from the theory of amicable
orthogonal designs were used to construct STBCs. The design
of full-diversity, square, complex STBCs was considered in [6]
with the aim to reduce the decoding delay and to maintain the
maximum achievable symbol rate. The design procedure was
based on the properties of the underlying Clifford algebra. There
are different realizations of orthogonal designs [24], [5], [6]. A
simple recursive expression for orthogonal designs was given in
[7]. If nonsquare codewords are allowed, the transmission rates
of orthogonal STBCs can be improved and a systematic code
design method was presented in [8].

To increase the transmission rates, the authors of [9] and [10]
also constructed STBCs from block-orthogonal designs which
are also well known as quasi-orthogonal designs. In case of the
block-orthogonal designs, the columns of the code matrices are
grouped, and the columns within a group are not orthogonal, but
the columns belonging to different groups are orthogonal to each
other. This design approach increases the symbol rate, but the
resulting STBCs, in general, cannot achieve full diversity. Full-
diversity block-orthogonal STBCs were proposed in [11]–[14].
The full-diversity property was ensured by taking some of the
channel symbols from a rotated version of the used constellation
with a carefully chosen rotation angle.

This work considers the problem of further improving the
performance of STBCs. We propose a class of space-time
codes constructed by combining orthogonal designs with
sphere packing in a systematic way for an arbitrary number
of transmit antennas. In case of the conventional STBCs from
orthogonal designs, the symbols are chosen independently
from a given constellation. The basic idea of our method is to
determine the values of the symbols in the orthogonal designs
jointly. The structure of the orthogonal designs is exploited to
achieve full diversity, and sphere packing is used to improve
the coding advantage. We also construct full-diversity STBCs
from block-orthogonal designs with sphere packing. The full
diversity is guaranteed by choosing some of the symbols from a
rotated version of the used sphere packing. The optimal rotation
angle that maximizes the normalized coding advantage will be
determined for a class of sphere packing.

The paper is organized as follows. Section II will introduce
the channel model and briefly summarize the relevant results
from previous work. Section III will describe the STBC de-
sign method for orthogonal designs with sphere packing. The
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code construction method for block-orthogonal designs will be
given in Section IV. The simulation results will be provided
in Section V, and some conclusions will be drawn in the last
section.

II. CHANNEL MODEL AND STBC DESIGN CRITERIA

We consider a wireless communication system with
transmit antennas and receive antennas. The encoder divides
the input bit stream into bit long blocks, and for each block, it
selects one space-time codeword from the codeword set of size

. The selected codeword is then transmitted through the
channel over the transmit antennas and time slots. Each
codeword can be represented as a matrix

...
...

. . .
...

(1)

where denotes the channel symbol transmitted by transmit
antenna , at discrete time .
The codewords are assumed to satisfy the energy constraint

, where is the Frobenius norm1 of ,
and stands for the expectation.

The transmission medium is assumed to be flat (frequency
nonselective), quasi-static, Rayleigh-fading channel, so the
channel stays constant during the transmission of one code-
word. The MIMO transceiver can be modeled as

(2)

where is the received signal matrix of
size in which is the received signal at receive an-
tenna at time is the channel co-
efficient matrix of size in which is the channel co-
efficient between transmit antenna and receive antenna

is the noise matrix of size , and is
the space-time codeword, as defined in (1). The channel coeffi-
cients and noise are modeled as zero-mean, complex Gaussian
random variables with unit variance. The factor in (2)
ensures that is the average SNR at each receive antenna, and
it is independent of the number of transmit antennas.

Assuming that the channel matrix is available at the re-
ceiver, the maximum likelihood decoding algorithm chooses
the decoded codeword according to

. The pairwise error probability between two dis-
tinct codewords and can be upper bounded as [1], [2]

(3)

where , and are the nonzero
eigenvalues of . The superscript stands for

1The Frobenius norm of � is defined as

��� � ���� �� � ����� � � �� � �

the complex conjugate and transpose of a matrix. Based on the
pairwise error probability, two code design criteria have been
proposed [1], [2]: 1) The minimum rank of the code difference
matrix over all distinct codewords and should be
as large as possible; and 2) The minimum value of the product

over all distinct codewords and should be as large
as possible. This quantity is referred to as the coding advantage
achieved by the STBC. If the difference matrix is always
of full rank, the objective is to maximize the determinant of

.
If the matrix is always of full rank for a specific STBC,

we say that this STBC achieves full diversity. We consider the
design of STBCs of square size, i.e., . If a STBC of
square size achieves full diversity, the diversity product, which
is the normalized coding advantage, is given by [15], [16]

(4)

Substituting (4) into (3), we obtain ,
so it is desirable to maximize the diversity product if the full
diversity has been achieved. In [17], it was shown that for a
STBC consisting of codewords, the diversity product is upper
bounded by .

III. ORTHOGONAL DESIGNS WITH SPHERE PACKING

In this section, we consider the construction of STBCs
from orthogonal designs with sphere packing for

transmit antennas. If the number of transmit
antennas is not a power of two, the desired STBC can be ob-
tained by deleting some columns from a larger STBC designed
for a power of two antennas. The structure of the orthogonal
designs will be exploited to achieve full diversity, and sphere
packing will be used to maximize the diversity product (coding
advantage).

A recursive expression for orthogonal designs was given in
[7] as follows. Let , and

(5)

Then, is an orthogonal design of size
with complex variables . The symbol

rate of is , which is the maximum rate for orthog-
onal designs of square size ([5]–[7] and the references therein).

For transmit antennas, STBCs can be constructed
from the orthogonal design as

(6)

with some specific choices of such that
. For example,

if the complex variables are chosen in-
dependently from a QPSK constellation, there are totally

codewords to be transmitted. The normalization
factor in (6) ensures that satisfies the energy
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constraint . In case of the conventional
STBCs from orthogonal designs, the symbols in the orthogonal
designs are chosen independently from PSK or QAM constel-
lations. The basic idea of the new scheme is that we design
these symbols jointly with sphere packing to further increase
the coding advantage.

For two distinct codewords

and

the code difference matrix is given by

and

(7)

It is easy to see that for two different vectors
and , the full rank of the code difference ma-
trix is guaranteed.

Having ensured that the STBCs achieve full diversity, the next
step is to maximize the diversity product. From (4), the diversity
product can be expressed as

(8)

As a consequence, the diversity product is determined by
the minimum Euclidean distance of the set of -di-
mensional complex vectors underlying
the STBC. Therefore, sphere packing in the -di-
mensional real Euclidean space [29] can be used to
maximize the diversity product. More formally, assume that

is a
set of points from a -dimensional sphere packing with

total energy .
For each vector in , we can define a corresponding set of
complex symbols as: , where

. Then, the matrices

(9)
form a set of space-time codewords whose diversity product is
determined by the minimum Euclidean distance of . The factor

ensures that the resulting STBC satisfies the energy
constraint (assuming that all codewords are equally likely to be
transmitted).

In the following sections, we will provide code design exam-
ples for two and four transmit antennas.

A. Code Design for Two Transmit Antennas

For two transmit antennas, the orthogonal design is

(10)

which was first used by Alamouti in space-time coding [3]. Later
in [16], a similar structure with constraint was
used to build unitary matrices, the so-called Hamiltonian
constellation for differential modulation. This constraint is not
necessary for the design of STBCs with coherent detection.

In the four-dimensional real Euclidean space , the sphere
packing with the best known minimum Euclidean distance
is a lattice that consists of all points with integer coordinates

such that is even [29], and it
is usually denoted as . Alternatively, may also be defined
as the integer span of the vectors that form the
rows of the generator matrix

We now combine the orthogonal design and the sphere
packing to construct STBCs for two transmit antennas. As-
sume that
is a set of points from with total energy

. Let

(11)

Then, is a set of space-time code-
words whose diversity product is determined by the minimum
Euclidean distance of .

We list the diversity products of the orthogonal designs with
sphere packing (abbreviated as Orth. with S.P.) for two transmit
antennas in Table I, and compare them with those of the cyclic
codes [15], the parametric codes [17], the diagonal algebraic
codes [21], the high rate codes [20], and the orthogonal
designs with PSK or QAM constellations. Table I shows that the
diversity product of the orthogonal designs with sphere packing
is greater than that of the other schemes except the case of

and . The diversity product of the diagonal algebraic
codes is the same as that of orthogonal designs with the same
QAM constellations. Note that for , there are optimal
space-time block codes [17], [18], in the sense that the diversity
product achieves the upper bound , and they can be shown
to be equivalent to the codes obtained by the proposed method.

B. Code Design for Four Transmit Antennas

The orthogonal design for four transmit antennas is
given by

(12)
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TABLE I
COMPARISON OF DIVERSITY PRODUCT FOR TWO TRANSMIT ANTENNAS. NOTE THAT WE ABBREVIATE ORTHOGONAL DESIGNS

WITH SPHERE PACKING AS ORTH. WITH S.P.

The symbol rate of is . We consider sphere packing in
six-dimensional real Euclidean space since there are three
complex symbols in .

In , the sphere packing with the best known minimum
Euclidean distance is the lattice [29]. has a simple de-
scription as a three-dimensional complex lattice over the Eisen-
stein integers.2 Precisely, is the Eisenstein integer span of
the vectors that form the rows of the generator matrix

where .

We now combine the sphere packing and the orthogonal
design to construct STBCs for four transmit antennas. As-
sume that is a
set of points from with total energy

2The set of Eisenstein integers is defined as [29, p. 52],

� � �� � �� � both � and � are integers�

in which � � ��� � �
�
����. Note that the hexagonal lattice modulation is

corresponding to a one-dimensional lattice over the Eisenstein integers.

Let

(13)

Then, is a set of space-time code-
words whose diversity product is determined by the minimum
Euclidean distance of . We list the diversity products of the
orthogonal designs with sphere packing for four transmit an-
tennas in Table II, and compare them with those of the cyclic
codes [15], the orthogonal designs with PSK constellations, the
diagonal algebraic codes [21], and the full-diversity block-or-
thogonal designs [13], [14]. We can see that the diversity prod-
ucts of the orthogonal designs with sphere packing are greater
than those of other four schemes. Note that the diversity product
of the diagonal algebraic codes is the same as that of the full-di-
versity block-orthogonal design in case of using the same QAM
constellations. For , the diversity product of the proposed
scheme achieves the upper bound 0.8165.

IV. BLOCK-ORTHOGONAL DESIGNS WITH SPHERE PACKING

In case of four or more transmit antennas, there are STBCs
from block-orthogonal designs [9], [10] that can provide higher

Authorized licensed use limited to: SUNY Buffalo. Downloaded on April 05,2010 at 12:29:41 EDT from IEEE Xplore.  Restrictions apply. 



SU et al.: ORTHOGONAL SPACE-TIME BLOCK CODES WITH SPHERE PACKING 1631

TABLE II
COMPARISON OF DIVERSITY PRODUCT FOR FOUR TRANSMIT ANTENNAS. NOTE THAT WE ABBREVIATE ORTHOGONAL DESIGNS WITH SPHERE PACKING AS ORTH.

WITH S.P., AND BLOCK-ORTHOGONAL DESIGNS WITH SPHERE PACKING AS BLOCK-ORTH. WITH S.P.

symbol transmission rate than those from orthogonal designs.
In order to obtain higher coding advantage, we also consider
STBC construction from block-orthogonal designs with sphere
packing. First, we will provide the code design method for four
transmit antennas, and then we will describe the general case for
any power of two transmit antennas.

A. Code Design for Four Transmit Antennas

For four transmit antennas, a STBC with symbol transmission
rate was constructed [10] from the Alamouti scheme as
follows:

(14)

where and

are chosen from some signal constellations. In general, this
scheme is not guaranteed to achieve full diversity. However, by
properly choosing the signal constellations, the full diversity
can be achieved [13], [14]: and can be chosen from any

constellation , and and can be chosen from the rotated
constellation .

We now construct block-orthogonal STBCs with sphere
packing for four transmit antennas from the block-orthogonal
design of (14), but the proposed method can be extended
easily to other block-orthogonal structures. We combine the
block-orthogonal design and the sphere packing in the
following way. Assume that

is a set of points from with total energy

. Let

If we define

(15)

then is a STBC with
codewords. In fact, the symbols and are taken from the
sphere packing in the same way as described in Section III-A,
and the symbols and are taken from the sphere packing
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Fig. 1. Block error rate performance of cyclic code “�,” parametric code “�,” orth. with 8 PSK “�,” orth. with 8 QAM “�,” and orth. with sphere packing “�.”
� � ��.

. The set of points is a rotated version of since
for each , there is a corresponding

such that

The factor in (15) ensures that the resulting STBC
satisfies the energy constraint. The diversity product can be cal-
culated as [14]

(16)

where and . Let

and

then the diversity product in (16) becomes

(17)

where and . This
form allows us to use the results of [19] directly to determine
the value of the rotation angle . Since we choose from
the sphere packing and choose from a rotated version
of , it was shown in [19] that if the rotation angle is chosen
as , the diversity product in (16) or (17) is not zero,
so the obtained STBC is guaranteed to achieve full diversity.
Moreover, in case of the sphere packing , the rotation angle

is optimal in the sense that we cannot choose any other
rotation angle to obtain a higher diversity product ([19, p. 947]).
We list the diversity products of the block-orthogonal designs
with sphere packing for four transmit antennas in Table II.
We can see that the diversity product can be increased by using
block-orthogonal designs with sphere packing for large , for
example, . However, there is little or no advantage by
using block-orthogonal designs with sphere packing in case of

and .

B. Code Design for Transmit Antennas

In this subsection, we consider the code design problem for
transmit antennas. In case of ,

Authorized licensed use limited to: SUNY Buffalo. Downloaded on April 05,2010 at 12:29:41 EDT from IEEE Xplore.  Restrictions apply. 



SU et al.: ORTHOGONAL SPACE-TIME BLOCK CODES WITH SPHERE PACKING 1633

Fig. 2. Block error rate performance of cyclic code “�,” diagonal algebraic code “�,” � ��� �� [20] “�,” the Golden code “�,” orth. with 16-QAM “�,” and orth.
with sphere packing “�.” � � ���.

the optimal rotation angle was obtained by taking advantage of
the result in [19]. However, [19] does not offer a solution for the
general case, so we have to develop a new method to determine
the optimal value of .

In general, for any orthogonal design
given by (5), a block-orthogonal design

of size by can be constructed as shown in
(18) at the bottom of the page [9], [10], [13]. For any sphere
packing

with total energy , we combine
the block-orthogonal design and the sphere packing
to construct STBCs for transmit antennas. For each

, let

and for each , let

where
is a rotated version of , which is specified as:

or equivalently

(19)

for and . The rotation angle
will be specified later, and it depends on the sphere packing .
If we define

(20)

then is a STBC with code-
words for transmit antennas. The factor
ensures that the resulting STBC satisfies the energy constraint.
The diversity product can be calculated as [14]

(21)

(18)
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Fig. 3. Block error rate performance of cyclic codes “�,” orth. with QPSK “�,” and orth. with sphere packing “�.” � � ��.

where and
. Obviously, we have

(22)

where and ,
and denotes the minimum Euclidean distance of the
sphere packing . We observe that the diversity product is upper
bounded by the normalized minimum Euclidean distance of the
sphere packing .

For a fixed sphere packing , our objective is to find an op-
timal rotation angle to maximize the diversity product in
(21). From the result in the previous subsection, we know that
in case of the sphere packing from the four-dimensional lat-
tice is an optimal rotation angle. The following
theorem generalizes this result by showing that for any sphere
packing from the -dimensional lattice , which
is defined as ([29, p. 117])

is even

the rotation angle is optimal in the sense that the upper
bound in (22) is achieved.

Theorem 1: For any sphere packing from the -di-
mensional lattice , if the rotation angle in (19) is chosen
as , the diversity product of the STBC defined in (20)
by combining the sphere packing and the block-orthogonal
design is

(23)

A proof of the theorem can be found in Appendix I. Note that
the minimum Euclidean distance of the sphere packing
is ([29, p. 117]), i.e., , thus the diversity

product is . From (22) and (23), we observe that
in case of using the sphere packing is an op-
timal rotation angle. For transmit antennas , we
showed this in the previous subsection using the results of [19]
which was obtained via analytical tools from algebraic number
theory. Theorem 1 provides an alternative way to determine the
optimal rotation angle.

V. SIMULATION RESULTS

We present some simulation results in this section. All of the
simulated communication systems had one receive antenna. As-
suming that there are codewords in a STBC, and each code-
word is transmitted over channel uses, the rate of the
STBC is bits per channel use, which corresponds to
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Fig. 4. Block error rate performance of diagonal algebraic code “�,” block-orth. with QPSK “�,” and orth. with sphere packing “�.” � � ���.

bits/s/Hz spectral efficiency. We assumed that the
channel state information is known exactly at the receiver and
the ML decoding method was used. We present block error rate
(bler) versus average SNR curves.

A. Two Transmit Antennas

First, we compare the proposed scheme, orthogonal design
with sphere packing , with other three schemes: the con-
ventional orthogonal design, the parametric code [17], and the
cyclic code [15]. Fig. 1 shows the simulation results for
case, resulting in a spectral efficiency of 3 bits/s/Hz. In order to
maintain the same spectral efficiency, we simulated the conven-
tional orthogonal design with 8 PSK and 8 QAM modulations,
respectively. The curves demonstrate that the proposed method
has the best performance. For example, at a bler of , the
orthogonal design with sphere packing has an improvement of
about 0.5 dB over the conventional orthogonal design with 8
QAM, 1.5 dB over the orthogonal design with 8 PSK, 2 dB over
the parametric code, and 4 dB over the cyclic code. We observe
that all the bler curves have approximately the same asymptotic
slope, suggesting that all these schemes achieve the same diver-
sity order.

Fig. 2 depicts the simulation results for the case
(spectral efficiency of 4 bits/s/Hz). Our scheme is compared
with the diagonal algebraic code [21], the high rate code

[20], the Golden code [22], and the conventional
orthogonal design with 16-QAM. We chose 16-QAM constel-
lation for the diagonal algebraic code, and the corresponding

unitary rotation matrix was We used QPSK

constellation for the high rate code with the optimum
parameters and (see [20, Sec. II-D]). The
figure shows that the orthogonal design with sphere packing
has an improvement of about 0.75 dB over the conventional
orthogonal design, 1.5 dB over the Golden code, 2 dB over the
diagonal algebraic code, and about 2.5 dB over the high rate
code at a bler of .

We also observe that in the case, even though the
diversity product of the parametric code is larger
than that of the orthogonal design with 8 PSK , the
simulated bler curves of Fig. 1 show that the the latter outper-
forms the former. A similar phenomenon can be seen in Fig. 2
for : the orthogonal design with 16-QAM
has a better performance than the diagonal algebraic code

, the high rate code , and the
Golden code . The reason for this is that the di-
versity product can only characterize the worst-case pair-wise
error probability, while the actual performance is governed by
the whole spectrum of the determinants of the code difference
matrices [27].

B. Four Transmit Antennas

For four transmit antennas , we compare both
orthogonal designs with sphere packing and block-orthogonal
design with sphere packing to some existing approaches. The
performance of the STBCs designed for (spectral
efficiency of 1.5 b/s/Hz) is shown in Fig. 3. The figure depicts
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Fig. 5. Block error rate performance of orth. with 16-QAM “�,” orth. with sphere packing “�,” block-orth. with 8 QAM “�,” and block-orth. with sphere packing
“�.” � � ����.

the bler curves of the orthogonal design with sphere packing,
the conventional orthogonal design with QPSK, and the cyclic
code. The curves show that the proposed scheme outperforms
the other two schemes. For example, at a bler of , we
observe a performance improvement of about 1 dB compared
to the conventional orthogonal design with QPSK, and about
2.5 dB compared to the cyclic code.

Fig. 4 contains the simulation results for the case
(spectral efficiency of 2 bits/s/Hz). Our scheme is compared
with the diagonal algebraic code [21], and the full-diversity
block-orthogonal design [13], [14]. We used QPSK constel-
lation for the diagonal algebraic code, and the corresponding
unitary rotation matrix was

We also chose QPSK constellation for the full-diversity block-
orthogonal design to maintain the same spectral efficiency. We
can see that at a bler of , the orthogonal design with sphere
packing outperforms the block-orthogonal design about 0.5 dB,
and outperforms the diagonal algebraic code about 1.75 dB.

Finally, in Fig. 5, we show that the performance can be further
improved if we construct STBCs from block-orthogonal designs
with sphere packing. Fig. 5 provides the simulation results for
the case, giving a spectral efficiency of 3 bits/s/Hz.
We compared four schemes: the conventional orthogonal design
with 16-QAM, the orthogonal design with sphere packing, the

block-orthogonal design with 8-QAM, and the block-orthog-
onal design with sphere packing. We constructed the STBC
from orthogonal design with sphere packing by taking

points from , and the STBC from block-orthogonal de-
sign with sphere packing by taking points from .
From the simulation results we observe that at a bler of ,
the orthogonal design with sphere packing is better than the
conventional orthogonal design about 1.5 dB, and the block-or-
thogonal design with sphere packing has an improvement of
about 0.75 dB over orthogonal design with sphere packing, and
1 dB over the block-orthogonal design with 8-QAM. Moreover,
we can see that the performance curve of the block-orthogonal
design with sphere packing has almost the same asymptotic
slope as the other two schemes. This confirms that the STBC
constructed from the block-orthogonal design with the sphere
packing (with ) achieves full diversity.

VI. CONCLUSION

In this paper, we focused on the problem of designing STBCs
from orthogonal and block-orthogonal designs. We proposed
a code construction method by combining orthogonal and
block-orthogonal designs with sphere packing. We constructed
codes for two and four transmit antennas and 1.5, 2, 3, and 4
bits/s/Hz spectral efficiencies. Both the theoretical diversity
product values and the simulation results demonstrate the
superior performance of the proposed method. In case of two
transmit and one receive antennas and a spectral efficiency of
4 bits/s/Hz, we observed a coding gain of about 0.75 dB over
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the conventional orthogonal design, 1.5 dB over the Golden
code, 2 dB over the diagonal algebraic code, and about 2.5 dB
over the high rate code at a bler of . By jointly
designing the symbols in the orthogonal and block-orthogonal
designs, we exploited the additional degrees of freedom to
further improve the performance at the expense of having to
decode the symbols jointly. However, the decoding complexity
can be significantly reduced if sphere decoding algorithms
[25], [26] are used in which searching radius can be adjusted to
reduce the decoding complexity and there is tradeoff between
the decoding complexity and performance degradation. Finally,
we would like to mention that the code designs discussed in
this paper were optimized based on pairwise bler performance.
It would be interesting to optimize the code designs based on
bit-error-rate performance and investigate optimal bit labeling
in future work.

APPENDIX

PROOF OF THEOREM 1

Since the diversity product is upper bounded by

, and in this case, in order to
prove the theorem, it is sufficient to show that

(24)

By Cauchy’s inequality, the diversity product in (21) can be
lower bounded as follows:

(25)

where and
. Defining as

(26)

in order to show , it is sufficient to prove that

for any .
For any pair of vectors and

from the -dimensional lattice
, the difference vector can be represented as

(27)

for some integers . According to the
definition of the lattice , we know that

is even. Similarly, for any pair of
vectors and

from the rotated version of the
lattice with a rotation angle as defined in
(19), the difference vector can be represented as

(28)

for some integers . The sum of these in-
tegers is also even. Substituting (27) and
(28) into (26), we have

Since all of and are
integers, so if there are two indices and such that

and , then , which is the
desired result.

In the following, we will prove that it is impossible to have
the case that all of are zeros under
the constraint that , i.e., and

cannot be zero at the same time. Finally,
if there is only one nonzero , i.e., and for
all , we will show that , which also implies that

. The rest of proof is divided into three steps.
Step 1: First, we show that for any , if ,

then and .
Without loss of generality, we assume that . The proof

for is similar. With the assumption that
, we know that both and
are zeros, i.e.

(29)

(30)

The equation in (29) implies that either both and are odd,
or both and are even. If both and are odd, denoted
as and , then substituting them
into (29), we have It follows
that one of and is even. On the other hand, from (30)
we know that either both and are odd, or both and

are even. Thus we conclude that both and are even,
denoted as and . Substituting them into
(30), we have which is contradictory to
the assumption that both and are odd. Thus, both and

must be even, denoted as and .
Similarly, we can prove that both and must be even,

denoted as and . Substituting
and into (29) and (30),

we obtain

(31)

(32)

Repeating the above argument, we can prove that all of
and are even. We can continue this process

repetitively. Since all of and are finite integers,
we conclude that some of and must be zero.

If , from (30) we have , i.e., .
Substituting and into (29), we arrive at
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. It follows that and ,
since both and are integers. Thus, all of and

are zeros. If or or , we can prove
that all of and are zeros in a similar way.

Step 2: In this step, we show that under the constraint that
, one of must be nonzero. According

to the result in Step 1, we know that for any ,
if , then and . If all
of are zeros, then all of
and are zeros, which is contradictory to
the constraint that . As a result, for two distinct vectors

and , at least one of the ’s must be nonzero. Therefore,
the only remaining case we have to consider is when exactly one

is nonzero.
Step 3: Finally, we show that if there is one index such that

and for all , then . Without
loss of generality, we assume that and for
all . From the result of Step 1, we know that

and for all
. Since all of and

cannot be zero at the same time, one of must
be nonzero. Moreover, since both and

are even, both and
are even in this case.

From the assumption that , i.e.,
, we know that at

least one of and must be
nonzero. Since

and both and are even, both
and are even. If ,
then . If , then

. Therefore, we conclude that .
Thus, we have proved the theorem completely.
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