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Transmit Beamforming for Space-Frequency Coded
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Abstract—This paper addresses the problem of joint optimiza-
tion of transmit beamforming and space-frequency (SF) coding
for MIMO-OFDM systems with spatial correlation feedback in
broadband communications. This problem is challenging in the
sense that the transmitter should be designed to beamform across
multiple eigenspaces associated with the multipath environment
simultaneously. With arbitrary transmit spatial correlation, the
performance analysis for SF-coded MIMO-OFDM systems with
beamforming is provided, and a general optimization problem
for the beamforming design is formulated. Three suboptimal
approaches to design the beamformer based on the derived
design criteria are proposed: i) Eigenvalue selection scheme; ii)
Eigenspace selection scheme; and iii) Per-subcarrier approach
based on decoding at each subcarrier. The proposed schemes take
into account the multiple eigenspace information associated with
the multipath-delay channel. Improvement in the performance
over SF coding without beamforming is shown through simula-
tions in terms of bit error rate. The Eigenvalue selection scheme
provides the best performance among the proposed algorithms.
This scheme locates the subspace associated with the largest
eigenvalues in the eigenspace of the covariance matrices. With
the Eigenvalue selection scheme, the performance improvement
is about 3 dB over the SF coding without beamforming for highly
correlated channels as shown in our simulations.

Index Terms—Broadband wireless communications, MIMO-
OFDM systems, transmit beamforming across multiple
eigenspaces, multiple antennas, space-frequency coding,
correlation feedback.

I. INTRODUCTION

DESIGNING transmit-diversity schemes for multiple-
input-multiple-output (MIMO) systems depends on the

form of channel state information (CSI) available at the
transmitter. With no CSI, space-time coding can achieve the
diversity gain inherent in MIMO flat-fading channels [1], [2].
On the other hand, with perfect CSI transmit beamforming
maximizes the signal-to-noise-ratio at the receiver side [3],
[4]. For the more general case, the transmitter can acquire
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partial information via a feedback channel from the receiver
or during a duplex mode of transmission. In literature, two
main categories of channel feedback are considered [5], [6]:
i) mean feedback: where the transmitter attains an estimate of
the current channel realization; and ii) covariance feedback:
the transmitter knows the spatial covariance structure of the
channel.

Extensive studies have been done in literature for MIMO
communication systems over flat fading channels with various
channel feedback information [5]–[8]. For the case of fre-
quency selective fading channels few works have investigated
the effect of the CSI feedback on MIMO-OFDM systems
[4], [9], [10], [13], [14]. In [4], the authors assumed perfect
CSI at the transmitter, and they proposed a joint transmit-
receive beamforming design for multicarrier frequency selec-
tive fading MIMO systems. A mean feedback model was
adopted in [9], and an adaptive two-dimensional space-time
coded beamformer over each subacarrier was developed. Note
that utilizing space-time coding on each subcarrier cannot,
in general, exploit the frequency diversity available in the
frequency selective fading environment [11]. To reduce feed-
back overhead in mean-feedback scenarios, [12] proposes a
beamforming technique where the receiver utilizes quantized
feedback. In [13], eigenbeamforming with selection diversity
is investigated where eigenmodes are selected to maximize the
instantaneous received SNR for each subcarrier. In [14], and
under an information theoretic framework, an efficient tech-
nique to get covariance channel information at the transmitter
is proposed where the covariance matrix for the downlink is
obtained by suitably averaging uplink channel measurements
across frequency.

In the previous work discussed above, perfect CSI and mean
feedback might not be feasible in mobile scenarios where the
channel is quickly varying. As a result, covariance feedback
becomes an adequate approach to adopt as the channel statis-
tics do not vary quickly. In this paper, we consider the problem
of transmit beamforming design for MIMO-OFDM systems
when the covariance matrix of the channel is available at
the transmitter. Our major contribution compared to previous
work is that we formulate an optimization problem to design
a beamformer jointly for all subcarriers in a MIMO-OFDM
system, and we show the criteria for optimal design. We fur-
ther develop suboptimal approaches to design the beamformer
and show by simulations the improvement in performance
compared to SF coding without beamforming.
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In particular, we derive the average pairwise error probabil-
ity of a MIMO-OFDM system with arbitrary transmit spatial
correlation, and we formulate a general beamformer optimiza-
tion problem in terms of minimizing the average pairwise error
probability. For this joint optimization problem, we provide the
criteria to design a SF-beamforming scheme. Then, we adopt
a transmitting scheme in which we utilize a SF code that can
achieve full diversity for uncorrelated channel scenarios and
design a beamformer that enhances the performance of the
code under the knowledge of the channel covariance structure.
In a flat fading scenario, the problem has a closed form
solution, which results in a space-time beamformer design [8].
However, in a MIMO multipath environment, there exist in
general L delay paths. As a result, the eigenspace associated
with the channel covariance matrices is L times larger than
that of the beamformer, i.e., the beamformer has to match to
multiple eigenspaces simultaneously. This is different from
the MIMO flat fading case, where the number of degrees
of freedom available to design the beamformer is equal to
the dimension of the channel covariance matrix that the
beamformer should match to.

The performance analysis of the system reveals that it is
difficult, if not impossible, to find a closed form solution
for designing the optimum beamformer for MIMO-OFDM
systems. Based on the average pairwise error probability, we
propose three suboptimal approaches to design the beam-
former. Simulations are conducted to compare the performance
of the proposed algorithms to SF coding without beamforming
and instantaneous beamforming.

II. SYSTEM MODEL

We consider a MIMO frequency selective fading channel
model with Mt transmit antennas and Mr receive anten-
nas. OFDM with N subcarriers is utilized, as it provides
an attractive means to lower the complexity of equalization
and decoding in frequency selective environment [15]. The
multipath channel has L significant delay paths between each
transmit-receive antenna pair. The path gains for different
delays are assumed to be independent. The channel impulse
response from transmit antenna i to receive antenna j can be
modeled as

hij (τ) =
L−1∑
l=0

αij (l) δ (τ − τl) , (1)

where τl is the delay of the l-th path, and αij (l) is the
complex path gain between transmit antenna i and receive
antenna j. The αij (l) are modeled as zero mean, circularly
symmetric complex Gaussian random variables with variance
β2

l . The channel gains are assumed jointly Gaussian. The time
delay τl and the variance β2

l are the same for each transmit
receive link [16]. The power of the L paths are normalized
such that

∑L−1
l=0 β2

l = 1. From (1), the frequency response of

the channel is given by H̃ij(f) =
L−1∑
l=0

αij(l)e−j2πfτl , where

j =
√−1. We consider spatial correlation at the transmitter

side, while different receive antennas are assumed independent
and have the same fading statistics, i.e.,

E[αij(l)α∗
pq(l)] = β2

l r(i − p)δ(j − q), (2)

where r(i−p) is the spatial correlation factor between transmit
antennas i and p, and δ(·) is the delta function. This model
generally arises when the transmitter is unobstructed with
many scatterers, while the receiver is surrounded by a rich
scattering environment, as in the downlink of a cellular system.

At the transmitter, the input bits to the SF-beamformer coder
are divided into b bits-long, which are then mapped into a
SF-beamformer symbol. Each SF-beamformer symbol can be
expressed as an Mt × N matrix

B = [b (0) b (1) . . . b (N − 1)] , (3)

where b (n) = [b1 (n) b2 (n) . . . bMt (n)] T
is an Mt×

1 column vector. The SF-beamformer symbol B is assumed
to satisfy the energy constraint E

[‖B‖2
F

]
= NMt, where

E [·] denotes expectation, and ‖B‖F is the Frobenius norm
of B. The OFDM transmitter applies IFFT to each row of
the matrix B. By appending a cyclic prefix, it transmits the
OFDM symbol corresponding to the i-th row of B at the i-th
antenna.

At the receiver, after matched filtering, removing the cyclic
prefix, and applying FFT, the received signal at the n-th
subcarrier at receive antenna j is given by

yj (n) =
√

ρ

Mt
hT

j (n)b (n) + vj (n) , (4)

where

hj (n) = [H1j (n) H2j (n) . . . HMtj (n)]T , (5)

in which Hij (n) =
∑L−1

l=0 αij (l) e−j2πnΔfτl , represents the
channel frequency response at the n-th subcarrier between
transmit antenna i and receive antenna j, where Δf = 1/T
is the subcarrier frequency separation, and T is the OFDM
symbol period. In (4), b(n) is the n-th column of the matrix
B, and it represents the channel symbol vector transmitted
on the n-th subcarrier. The term vj (n) in (4) denotes the
additive white circularly symmetric complex Gaussian noise,
with zero mean and unit variance, at the n-th subcarrier at
receive antenna j.

III. PERFORMANCE ANALYSIS AND GENERAL

BEAMFORMER DESIGN

In this section, we analyze the performance of the MIMO-
OFDM system with arbitrary channel correlation conditions
at the transmitter as specified in the previous section. Then,
we formulate a general optimization problem to design a joint
SF-beamformer symbol.

A. System Performance Analysis

First we derive an expression for the average pairwise error
probability. We rewrite the received signal in (4) in matrix
form as

y =
√

ρ

Mt
Hvec (B) + v, (6)

where the NMr × NMt channel matrix H is formatted as

H =
[
HT

1 HT
2 . . . HT

Mr

]T
, in which Hj represents

the channel frequency response to receive antenna j, and is
formatted as an N × NMt block diagonal matrix as follows

Authorized licensed use limited to: SUNY Buffalo. Downloaded on February 11, 2009 at 10:53 from IEEE Xplore.  Restrictions apply.



SADEK et al.: TRANSMIT BEAMFORMING FOR SPACE-FREQUENCY CODED MIMO-OFDM SYSTEMS WITH SPATIAL CORRELATION FEEDBACK 1649

Hj = diag
(
hT

j (0) ,hT
j (1) , . . . ,hT

j (N − 1)
)
. The average

pairwise error probability between two channel symbols B
and B̃ assuming coherent detection can be bounded with [18]

Pr
(
B → B̃

)
≤
(

ρ

4Mt

)−r(RΦ)
⎛
⎝r(RΦ)−1∏

i=0

μi (RΦ)−1

⎞
⎠ ,

(7)
where Φ is an NMr × 1 vector given by Φ =
H
[
vec (B) − vec

(
B̃
)]

, and RΦ is its covariance matrix.

r (·) and μi (·) denote the rank and i-th eigenvalue of a matrix.
The diversity gain of the system is given by r(RΦ), and the

coding gain is given by the product term
∏r(RΦ)−1

i=0 μi (RΦ).
The covariance matrix RΦ can be written as

RΦ = E
[
Hvec

(
B − B̃

)
vecH

(
B− B̃

)
HH
]

= E
(
HΔΔHHH) , (8)

where Δ = vec
(
B − B̃

)
. The channel matrix H contains the

channel frequency response from the transmitter to different
receive antenna. (8) can be further expanded as

RΦ = E

⎧⎪⎨
⎪⎩
⎡
⎢⎣

H1Δ
...

HMrΔ

⎤
⎥⎦ [ ΔHHH

1 . . . ΔHHH
Mr

]
⎫⎪⎬
⎪⎭ .

(9)
With the assumption that the fading at different receive anten-
nas is independent with identical statistics, we can write (9)
as

RΦ = IMr ⊗ E[HiΔΔHHH
i ]. (10)

Note that the term E
[
HiΔΔHHH

i

]
is independent of the

receive antenna, and denote it as Ψ. Since, the matrix Hi has
a diagonal structure, the matrix Ψ can be expressed as shown
in (11), where Δ (n) = b (n)−b̃ (n). Furthermore, the vector
hi(n) can be written as

hi (n) =
L−1∑
l=0

e−j2πnΔfτlαi (l) , (12)

where αi(l) = [α1i(l), · · · , αMti(l)]T denotes the channel
gains from all transmit antennas to receive antenna i for
the l-th delay path. With the assumption that different delay
paths are independent, which holds when different clusters of
scatterers are well separated in the spatial domain, we have

E
[
hi (n)hH

i (k)
]

=
L−1∑
l=0

e−j2π(n−k)ΔfτlRα,l. (13)

where the Mt ×Mt matrix Rα,l , 0 ≤ l ≤ L− 1, denotes the
spatial fading covariance matrix of the l-th delay path to any
receive antenna, and is given by

Rα,l = E[αj(l)αH
j (l)]. (14)

Combining (11) and (13), we can calculate Ψ as shown in
(15). With the fact that Δ (n) is the n-th column of the matrix
(B − B̃), we can further simplify (15) as follows

Ψ =
L−1∑
l=0

Dτl(B − B̃)TRα,l(B − B̃)∗D∗τl , (16)

where D = diag
(
1, e−j2πΔf , . . . , e−j2π(N−1)Δf

)
.

Finally, we write (16) in a compact matrix form as follows

Ψ = Fdiag [Rα,0,Rα,1, · · · ,Rα,L−1]FH, (17)

where F is given by

F =
[

Dτ0

(
B− B̃

)T

· · · DτL−1

(
B− B̃

)T
]

. (18)

Therefore, combining (10) and (17), we get

RΦ = IMr ⊗ Ψ, (19)

We summarize the result of the above analysis in the following
Theorem.

Theorem 1: The covariance matrix RΦ can be decomposed
as

RΦ = IMr ⊗ F diag [Rα,0,Rα,1, · · · ,Rα,L−1]FH, (20)

where Rα,l is specified in (14) and F is defined in (18).
Theorem 1 determines the covariance matrix RΦ as a

function of the spatial correlation structure of the channel and
the SF-beamformer symbol B. This theorem will serve as a
basis for the design of the beamformer.

B. General Optimization Formulation for Beamformer Design

We try to jointly design a general SF-beamformer matrix B
that minimizes the system pairwise error probability (7) with
the energy constraint E

[‖B‖2
F

] ≤ NMt. More specifically,
the optimization problem can be stated as follows

min
(

ρ

4Mt

)−r(RΦ)
⎛
⎝r(RΦ)−1∏

i=0

μi (RΦ)−1

⎞
⎠ ,

s.t. E
[‖B‖2

F

] ≤ NMt, (21)

where the minimization is over all possible SF-beamformer
symbol pairs (minimize the worst case codewords pair) and
the matrix RΦ is specified in (20). The objective function
(21) suggests two criteria to design a general SF-beamformer
symbol B: i) Maximize the rank of the matrix RΦ; diversity
gain; ii) maximize the product of the nonzero eigenvalues
of RΦ given by

∏r(RΦ)−1
i=0 μi (RΦ); the coding gain. We

emphasize at this point that the above design criteria for SF-
beamformer are general in the sense that we do not impose
any structure on the SF-beamformer B. We try to design a
SF-beamformer matrix that matches to the channel statistical
information available at the transmitter. If there is no spatial
correlation at the transmitter side, i.e., the spatial correlation
matrices Rα,l are identity, the above conditions reduce to the
design of SF codes [17].

The general optimization problem is difficult to tackle
analytically. To relax the optimization problem, we will adopt
another transmitting scheme in which a SF code is already
designed to achieve full diversity for a spatial correlation-free
channel, and then we try to design a beamformer to match to
the channel correlation matrix. This approach of splitting the
transmitter design problem into a predesigned SF code and
a beamformer has been adopted in [8] for space-time coding
over flat fading channels.

We denote the SF code by a Mt ×N matrix C. The linear
transformation, or beamformer W, can take various forms, for
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Ψ = E

⎧⎪⎨
⎪⎩
⎡
⎢⎣

ΔT (0)hi (0)
...

ΔT (N − 1)hi (N − 1)

⎤
⎥⎦ [hH

i (0)Δ∗ (0) , . . . ,hH
i (N − 1)Δ∗ (N − 1)

]
⎫⎪⎬
⎪⎭ (11)

Ψ =
L−1∑
l=0

E

⎧⎪⎨
⎪⎩
⎡
⎢⎣

ΔT (0)αi (l)
...

e−j2π(N−1)ΔfτlΔT (N − 1)αi (l)

⎤
⎥⎦ [ αH

i (l)Δ∗ (0) , . . . , αH
i (l)Δ∗ (N − 1) ej2π(N−1)Δfτl

]
⎫⎪⎬
⎪⎭ (15)

example: i) vec(B) = Wvec(C) in which the beamformer
matrix W is of size NMt ×NMt; ii)B = WC in which the
beamformer W is of size Mt × Mt. In general, we represent
the relation between the SF-beamformer symbol B and the
SF-code C as follows

f(B) = Wf(C), (22)

where f(·) is a function that can, for example, take the form
f(B) = vec(B) or f(B) = B. Note that (22) is a general
representation of all possible linear transformations between
C and B. Since we can think of f(·) as a rearrangement of
B, we can write B as a product of a function of W and a
function of C as follows

B = g(W)q(C), (23)

where g(·) is an Mt × K matrix, q(·) is a K × N
matrix, and K depends on the function f(·).
Substituting (23) into (20), we get (24), where F̂ =[

Dτ0

(
q(C) − q(C̃)

)T

· · · DτL−1

(
q(C) − q(C̃)

)T
]
.

In order to apply the design criteria we need to find the
rank and eigenvalues of the matrix RΦ in terms of the
beamformer matrix W. In order to simplify the notations, let
the LK × LK matrix R̃ denote the block diagonal matrix in
(24) as shown in (25). Then, the rank of RΦ can be given by
r(RΦ) = Mrr(F̂R̃F̂H). The matrix F̂ is of size N×LK , and
we assume that LK ≤ N , which is typically true in OFDM
systems as N is usually designed much larger than LMt.
Assuming that the SF code is designed to achieve full diversity
in the case of no spatial correlation, we rewrite F̂R̃F̂H after
row and column reordering in the form

J =
[

F̂1

F̂2

]
R̃
[

F̂H
1 F̂H

2

]
=
[

F̂1R̃F̂H
1 F̂1R̃F̂H

2

F̂2R̃F̂H
1 F̂2R̃F̂H

2

]
,

(26)
where J is the reordered matrix, F̂1 is of size LK ×LK and
is full rank, and the matrix F̂2 takes the rest of the matrix.
Since the ordered singular values of a matrix are not smaller
than the corresponding singular values of any square submatrix
obtained by deleting equal number of rows and columns of the
original matrix [19], we get

μi(F̂R̃F̂H) ≥ μi(F̂1R̃F̂H
1 ), (27)

where μi() denotes the i-th eigenvalue of a matrix and are
ordered in non-increasing order.

The eigenvalues of F̂1R̃F̂H
1 are given by μi(F̂1R̃F̂H

1 ) =
θiμi(R̃), where θi is a nonnegative real number such that
μmin(F̂1F̂H

1 ) ≤ θi ≤ μmax(F̂1F̂H
1 ), which follows by

Ostrowski [20], and μmin and μmax denote the smallest
and largest eigenvalues, respectively. Applying Ostrowski’s
Theorem along with (27), we can find the rank of the matrix
F̂R̃F̂H as follows

r(F̂R̃F̂H) = r(R̃) =
L−1∑
l=0

r(gT (W)Rα,lg∗(W)), (28)

where the second equality comes from the block diagonal
structure of R̃. Similarly, the eigenvalues of the matrix F̂R̃F̂H

can be lower bounded as follows

μi(F̂R̃F̂H) ≥ μmin(F̂1F̂H
1 )μi(R̃). (29)

Note that, maximizing the coding gain of the system corre-
sponds to maximizing the product of the nonzero eigenvalues
of the matrix RΦ which is equivalent to maximizing the
product of the nonzero eigenvalues of F̂R̃F̂H. From (29),
this product can be lower bounded as follows

r(R̃)∏
i=1

μi(F̂R̃F̂H) ≥ γ

r(R̃)∏
i=1

μi(R̃). (30)

where γ is a constant that depends on μmin(F̂1F̂H
1 ). If

the matrix R̃ is full rank, the product of its eigenvalues
corresponds to its determinant. Thus our goal now is to
maximize the determinant of the matrix R̃ under the energy
constraint on the SF-beamformer symbol. The determinant of
the matrix R̃ is upper bounded by the product of its diagonal
elements [20], and the upper-bound is achieved if and only if
R̃ is diagonal. More specifically

det(R̃) ≤
LK∏
i=1

R̃ii, (31)

where R̃ii is the i-th diagonal element of the matrix R̃. Hence,
the equality holds when the matrix R̃ is diagonalized and this
can only be achieved if the L block diagonal entries of the
matrix R̃ are diagonalized (25). This corresponds to choosing
W to diagonalize gT (W)Rα,lg∗(W), for all 0 ≤ l ≤ (L−1).

A beamformer that achieves the upper bound in (31) is
considered optimal. However, according to (24), irrespective
of the form of the function g(W) the same beamformer should
match to the covariance matrices of all the L delay paths
simultaneously in order to achieve the upper bound. This can
not be achieved, in general, except for the special cases when
all of the L delay paths have the same spatial correlation
matrix, or when L = 1 which corresponds to the flat fading
case. As a result, it is very difficult, if not impossible, to find a
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RΦ = IMr ⊗ F̂diag
[
gT (W)Rα,0g∗(W),gT (W)Rα,1g∗(W), · · · ,gT (W)Rα,L−1g∗(W)

]
F̂H, (24)

R̃ = diag
[
gT (W)Rα,0g∗(W),gT (W)Rα,1g∗(W), · · · ,gT (W)Rα,L−1g∗(W)

]
. (25)

closed form solution for the optimal beamformer. To solve the
optimization problem we must, in general, employ numerical
search techniques for the beamformer matrix, which will be
exhaustive. The above optimization problem is challenging, as
it is different from the problem of beamforming in a MIMO
flat fading channel in the sense that the transmitter should
beamform across multiple eigenspaces simultaneously. To pro-
vide some insights we will render to suboptimal solutions for
the problem, and for simplicity, we will adopt the conventional
definition of the beamformer B = WC in the rest of the paper.

IV. SUBOPTIMAL DESIGNS OF BEAMFORMERS

In this section, three different approaches for designing the
beamformer are proposed. The proposed approaches, although
suboptimal, are well motivated by the derived performance
criteria and the understanding of the underlying physics of
the problem.

A. Eigenvalue Selection Scheme

In this subsection, we design the beamformer jointly for
all subcarriers, and propose the Eigenvalue selection scheme.
The optimization problem can be re-casted in the following
manner. There are L independent delay paths, each has Mt

degrees of freedom. The beamformer has only Mt degrees of
freedom to match to the L Mt-dimensional spaces shown in
(32). We represent the beamformer W in the following way

W = UΓ, (33)

where the i-th column in U corresponds to the i-th beam-
forming direction, and Γ is a diagonal matrix with the i-th
diagonal element representing the power loading along this
direction. The beamformer directions U should be designed
to simultaneously whiten the effects of the spatial correlation
matrices {Rα,l}L−1

l=0 in (32) in order to satisfy the upper bound
in (31), which is very general to achieve in general.

One intuitive, but suboptimal, approach to overcome this
problem is to select from amongst the LMt-dimensional space
an Mt space and design the beamformer to match this smaller
space. One can choose this smaller space according to different
criteria. In the Eigenvalue selection approach, we choose
the largest Mt eigenvalues λi from the LMt eigenvalues
available from the eigendecomposition of the L covariance
matrices, and the corresponding Mt eigenvectors vi. The
beamformer is then designed to transmit in the directions of
these eigenvectors and the power loading is done proportional
to the eigenvalues along these directions. The rationale behind
doing the power loading in this way is that in general the
available power should be distributed according to the channel
conditions, i.e., more power should be allocated to channels
with better quality. Simulation results show that this approach
works fairly well under different channel conditions. The
algorithm can be summarized in the following steps:

1) Let the eigendecomposition of the spatial correlation
matrix at the l-th path be given by Rα,l = VlΛlVH

l ,
where 0 ≤ l ≤ L − 1.

2) Choose the largest Mt eigenvalues and the corresponding
eigenvectors from the LMt available eigenvalues and
eigenvectors in Λl and Vl, l = 0, 1, · · · , L − 1.

3) Arrange the Mt selected pairs in matrix format as follows
Λ = diag(λ1, · · · , λMt), V = [v1, · · · ,vMt ].

4) The beamformer W is determined as W = UΓ, in which
U = V∗, Γ = diag(σ1, · · · , σMt), and σ2

i = λi∑L−1
l=0 λi

.

The SF-beamformer symbol B is required to satisfy the energy
constraint E

[‖B‖2
F

]
= NMt as stated before, then we can

normalize the resultant SF-beamformer symbol to satisfy B =
WC

‖WC‖F

√
NMt, which guarantees that the energy of the SF-

beamformer symbol B does not exceed NMt.
It can be expected that choosing the directions with the

largest eigenvalues, i.e., with the most reliable channel con-
ditions, enhances the coding gain. However, since the di-
rections associated with the beamformer belong to different
eigenspaces (they belong to different eigendecompositions),
they are no more orthogonal and the matrix V is not, in
general, full rank. Accordingly, the matrix U is not, in general,
full rank and hence full diversity is not guaranteed in the
Eigenvalue selection approach. We will explore this more in
another approach described next.

B. Eigenspace Selection Scheme

In this scheme, we try to jointly select the eigenvalues and
eigenvectors, not only based on coding gain, but also based on
the diversity order of the system. The criteria that we suggest
is maximizing the volume occupied by the beamformer matrix,
which is given by the absolute value of the determinant of the
beamformer matrix

W = argmax
λi,vi

i=1,··· ,LMt

| det(W) | . (34)

To understand the intuition behind using this cost function, let
us investigate the Mt = 2 case, in which the beamformer can
be written as follows W = [u1u2]diag [σ1, σ2] . In this case,
the criteria is proportional to the area spanned by the matrix
W. This area is given by σ1σ2 sin(< u1,u2 >), where ui

and σi are the i-th eigenbeam and associated allocated power
respectively, and < ·, · > denotes the angle between the two
vectors. Clearly, the coding gain is controlled by the part σ1σ2,
which corresponds to the power loading and the magnitude of
the channel eigenvalues. The diversity gain is controlled by
sin(< u1,u2 >). Note that full diversity corresponds to the
case when the two eigenvectors u1 and u2 are orthogonal,
while diversity order one results when these two vectors are
parallel.

In a higher dimensional space, the volume occupied by the
beamformer, given by | det(W) |, is the volume spanned
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RΦ = IMr ⊗ F̂diag
[
WT Rα,0W∗,WTRα,1W∗, · · · ,WT Rα,L−1W∗] F̂H. (32)

by a parallelepiped in an Mt-dimensional space, which is
determined by the lengths of its sides and the angles between
these sides. The length of a side correspond to the magnitude
of the eigenvalue associated with this side, while the angles
between the sides affect the diversity gain. Full diversity
is achieved if all sides are orthogonal. Hence maximizing
det(W) provides a tradeoff between the coding gain and
the diversity order achieved by the system, and it would be
expected that such a scheme would provide a performance
tradeoff between pure SF coding that achieves full diversity
and the Eigenvalue selection scheme that maximizes the
coding gain of the system. We summarize the algorithm for
the Eigenspace selection scheme in the following steps:

1) Let the eigendecomposition of the spatial correlation
matrix at the l-th path be given by Rα,l = VlΛlVH

l ,
where 0 ≤ l ≤ L − 1.

2) Choose every possible combination of Mt eigenvalue and
eigenvector pairs from the LMt pairs available from the
eigendecomposition in the previous step.

3) Arrange the Mt selected pairs in matrix format as follows
Λ = diag(λ1, · · · , λMt), V = [v1, · · · ,vMt ].

4) The beamformer W is determined as W = UΓ, in which
U = V∗, Γ = diag(σ1, · · · , σMt), and σ2

i = λi∑L−1
l=0 λi

.

5) Calculate | det(W) |.
6) From among all possible combinations, choose W with

the largest determinant.

Similar to the Eigenvalue selection scheme, the columns
of the matrix U in the Eigenspace selection algorithm are
not, in general, orthogonal as the directions of the beam-
former belong to different eigenspaces. Hence, we need to
normalize the energy of the new SF-beamformer symbol as
B = WC

‖WC‖
√

NMt.

C. Per-subcarrier Solution

In the previous two approaches, the beamformer was de-
signed for all the subcarriers. In the per-subcarrier approach,
we try to design a beamformer to whiten the spatial correlation
effect of the channel at each subcarrier.

Assuming ML detection over each subcarrier, the average
pairwise error probability at the n-th subcarrier between two
channel symbol vectors b(n) and b̃(n) can be upper bounded
by

Pr
(
b(n) → b̃(n)

)

≤
(

ρ

4Mt

)−r(RΦ(n))
⎛
⎝r(RΦ(n))−1∏

i=0

μi (RΦ(n))−1

⎞
⎠ , (35)

where RΦ(n) can be shown to be given by (36). According
to the spatial correlation model specified in (2) and the
assumption of independence between different delays, we have

E[hi(n)hH
j (n)] = δ(i − j)

L−1∑
l=0

Rα,l, (37)

which is the same for all receive antennas. Substituting (37)
into (36), we get (38). Equation (38) asserts that independent
of the subcarrier, the beamformer should match to the same
matrix which is given by

∑L−1
l=0 Rα,l. As a result, for this

approach, the transmitter can apply the same beamformer to
all of the transmitted symbols. The interpretation for this result
is that the channel transfer function at any subcarrier is given
by the FFT of the channel gains at all delays, and thus they
all have the same spatial information about the channel. The
algorithm works as follows.

• Let the eigendecomposition of the matrix
∑L−1

l=0 Rα,l be
given by

∑L−1
l=0 Rα,l = VΛVH.

• The beamformer directions U are chosen to whiten the
effect of the matrix

∑L−1
l=0 Rα,l as U = V∗.

• The power loading across the beamformer directions
is done similar to the Eigenvalue and Eigenspace ap-
proaches as σ2

i = λi∑L−1
l=0 λi

.

V. SIMULATION RESULTS

To demonstrate the performance improvement due to apply-
ing the proposed algorithms compared to that of SF coding
without beamforming, we performed some computer simu-
lations. The channel model used is a two-ray, equal-power
delay profile, with a delay of 20μs between the two rays.
The MIMO-OFDM system has N = 128 subcarriers, and
QPSK modulation is used. The total bandwidth of the system
is 1MHz. Two antennas are used at the transmitter side, and
one at the receiver. 1

We choose the full-diversity SF code design from [17]
to conduct the simulations. Essentially, the SF code is ob-
tained by mapping from ST codes. In our simulations we
use the 2 × 2 Alamouti’s code [2]. To generate the spa-
tial correlation channel coefficients, we use the following
model αl = Alα̃l, where l ∈ { 0, · · · , L − 1

}
, αl =[

αT
1 (l), · · · , αT

Mr
(l)
]T

, α̃l is an MrMt ×1 vector with
i.i.d entries chosen from a complex Gaussian distribution with
zero mean and variance β2

l , and the matrix Al contains the
correlation coefficients, as follows

AlAH
l = IMr ⊗ Rα,l. (39)

Three channel scenarios are considered in the simulation
experiments: i) Channel 1: The eigenvalues of the 2 × 2
matrix Rα,l, l ∈ {0, 1}, has one non-zero eigenvalue, i.e.,
the matrix has rank one. This can be considered as a highly
correlated scenario. ii) Channel 2: The eigenvalues for Rα,0

are 0.22 and 0.77, and for Rα,1 are 1.4 and .075. This
corresponds to a moderate correlated channel model, and
actually from random experiments we find that most of the
channel realizations behave in this way. iii) Channel 3: The
eigenvalues for Rα,0 are 0.13 and 0.8, and for Rα,1 are
0.7 and 0.2. This corresponds to a channel with low spatial
correlation, as the values of the eigenvalues are comparable.

1In the simulations, we did not consider exhaustive search for the optimal
global solution of the beamformer because the computations are prohibitive.
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RΦ(n) = E

⎧⎪⎨
⎪⎩
⎡
⎢⎣

ΔT (n)h1 (n)
...

ΔT (n)hMr (n)

⎤
⎥⎦ [hH

1 (n)Δ∗ (n) , · · · ,hH
Mr

(n)Δ∗ (n)
]
⎫⎪⎬
⎪⎭ (36)

RΦ(n) =

[
(c(n) − c̃(n))T WT (n)

(
L−1∑
l=0

Rα,l

)
W∗(n)(c(n) − c̃(n))∗

]
IMr . (38)
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Fig. 1. Bit error rate performance comparison: Channel 1 with Mt = 2
transmit and Mr = 1 receive antennas.
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Fig. 2. Bit error rate performance comparison: Channel 2 with Mt = 2
transmit and Mr = 1 receive antennas.

Fig. 1 depicts the results for Channel 1. Both the Eigenvalue
and Eigenspace selection schemes choose the same eigenvec-
tor pair, as this channel has only one non-zero eigenvalue.
As shown in the results, the proposed algorithms have better
performance compared to that of SF coding without beam-
forming. Also, it can be seen that the performance curves are
approximately parallel, as the beamformer achieves coding-
gain, and does not incur any diversity loss in this case due to
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Fig. 3. Bit error rate performance comparison: Channel 3 with Mt = 2
transmit and Mr = 1 receive antennas. The dashed line represent the perfor-
mance results when using numerical optimization to design the beamformer.

the fact that Channel 1 is highly correlated. The performance
of the Eigenvalue selection scheme is better than that of the
per-subcarrier algorithm, and it has approximately 3 dB gain
over SF coding without beamforming. This is due to the fact
that the Eigenvalue selection algorithm beamforms in the two
non-zero directions, while SF coding distributes its power
equally among all directions, hence losing half its power.

Second, we consider Channel 2 as shown in Fig. 2. Similar
to Channel 1, both the Eigenvalue and Eigenspace selection
schemes choose the same eigenvector pair, and thus have
the same performance. The results show that the Eigenvalue
selection scheme gives the best performance in low to medium
SNR regions, while it is inferior to SF coding at sufficiently
high SNR regions. This can be interpreted as follows: Since
Channel 2 is less correlated than Channel 1, the eigenvalues
are more spread. In the region of low and medium SNR,
sending information on the most reliable channels gives the
best performance, this is achieved by the Eigenvalue selection
scheme as it chooses the directions with largest eigenvalues.
While in high SNR region, diversity gain dominates the
performance, which corresponds to equal power loading along
all directions, and it is achieved by SF coding.

Finally, we consider Channel 3. In this scenario, Eigenvalue
and Eigenspace beamforming choose different eigenvector
pairs. From Fig. 3, at low to medium SNR, Eigenvalue
selection still gives the best performance, while the perfor-
mance becomes in favor of SF coding at high SNR regions.
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As expected, Eigenspace selection beamforming provides the
tradeoff between the two extreme cases: Eigenvalue selection
scheme, which corresponds to optimizing the coding gain, and
SF coding without beamforming which achieves full diversity
gain. Thus, at low to moderate SNR regions the performance
of the Eigenspace algorithm is better than SF coding and
inferior to Eigenvalue selection, while it is better than Eigen-
value selection and inferior to SF coding at high SNR regions.
In Fig. 3, we have considered two more scenarios in our
comparisons. In particular, we applied numerical optimiza-
tion techniques to find the optimal beamforming design that
satisfies (31). Since the problem is highly non-convex, the
numerical algorithm is not guaranteed to converge to a global
optimal, and only local optima are reached. The local optima
depend heavily on the initial conditions selected and can lead
to performance inferior to the proposed algorithms.

Since comparing our heuristic to the optimal solution is
not feasible because the optimal solution can not be found in
our case, we compared the performance of our algorithms to
the best scenario possible when perfect instantaneous channel
information is available at the transmitter. In this case, it was
shown in [21], for the flat fading scenario, that transmitting
along the eigenvector with the largest eigenvalue minimizes
the error probability. We follow the same approach by design-
ing a beamformer separately at each subcarrier. The results
are depicted in Fig. 3 and it is clear that the gap between this
best scenario and our heuristics is not large.

From the simulations we have the following observations.
In the per-subcarrier approach, the beamformer W should
match the sum of the spatial correlation matrices

∑L−1
l=0 Rα,l.

This means that even if all or some of the spacial correlation
matrices Rα,l are rank deficient, the resultant matrix need
not be rank deficient, and this will affect the power loading
part in the per-subcarrier approach, and results in inferior
performance compared to Eigenvalue or Eigenspace selection
especially at low SNR. This is clear for Channels 1 and
2, where there is a relatively high spatial correlation. On
the other hand, Channel 3 has relatively low correlation and
that is why we can see that both the Eigenspace selection
and the per-subcarrier will have very close performance to
space-frequency coding without a beamformer as the resulting
power loading across the beams will almost be uniform.
This is not the case, however, with the Eigenvalue scheme
which finds the largest eignvalues in all the spatial correlation
matrices eigenspaces and beamforms in the their direction,
which results in a better performance at low SNR regimes
and worse performance at high SNR regimes.

VI. CONCLUSION

We formulated a general optimization problem to jointly
design a SF-beamformer scheme that minimizes the pairwise
error probability of MIMO-OFDM systems with spatial cor-
relation feedback. We derived the performance analysis for
a MIMO-OFDM system with arbitrary spatial correlation,
and provided the criteria to jointly design an optimum SF-
beamformer at the transmitter. The analysis revealed that
finding a closed form for the optimal beamformer design is not
tractable due to the fact that the beamformer need to match to
multiple eigenspaces simultaneously. Based on our analytical

results, we proposed three suboptimal transmitting schemes.
For any SF code designed for a spatially uncorrelated channel,
we designed beamformers that match to the spatial covariance
structure of the channel. Simulation results showed that the
Eigenvalue selection scheme can achieve a 3 dB gain over SF
coding without beamforming in highly correlated channels.
For channels with lower correlations, it results in a better
performance in low to moderate SNR regions.
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