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Abstract

In this paper we address the problem of optimal data
gathering in wireless sensor networks (WSN). The goal of
this work is to develop algorithms and techniques in order
to minimize the data delivery latency and at the same time
balance the energy consumption among the nodes, so as to
maximize the network lifetime. Following an incremental-
complexity approach, several mathematical programming
problems are proposed with focus on different network as-
pects. First, the static routing problem is formulated for
large and dense WSNs. Then, an accurate network model is
proposed that captures the tradeoff between the data deliv-
ery latency and the network energy consumption by model-
ing the interactions among the routing, medium access con-
trol and physical layers. Finally, we consider dynamic re-
routing and scheduling. For each problem we provide ex-
tensive simulations results for reference scenarios.
The proposed models provide a deeper insight into the prob-
lem of timely and energy efficient data gathering. Along
with the simulation results reported here they provide use-
ful guidelines for the design of effective WSNs.

1. Introduction

Wireless sensor networks [1] are composed of small
miniaturized devices endowed with limited sensing,
processing and computational capabilities. Wireless sen-
sors can be densely deployed across the monitored area,
and enable a broad range of applications in different fields
like environmental monitoring, surveillance, law enforce-
ment, etc.

In the typical applications the sensors monitor their
neighboring area, extract information and send sensed
data to remote sinks that reconstruct the overall charac-
teristics of the phenomenon [1]. Since wireless sensors
are typically low-cost, low-power and short-range de-
vices, multi-hop routes are used to relay data from the mon-

itored area to the sink. These paths are typically built
on-demand (reactive routing) or dynamically pre-computed
(proactive routing) [2]. In the former case, path compu-
tation is triggered by the occurrence of specific events or
upon request from the application; in the latter, the routes
are determined before they are really used. The aggre-
gate of multi-hop paths used to relay data to the sink can be
seen as a data-delivery tree.

In this context, data aggregation has been proposed as
an essential paradigm for routing in WSNs [3]. The idea
is to combine the data coming from different sources en-
route, thus eliminating redundancy, minimizing the number
of transmissions and saving energy. This relies on the as-
sumption, true in many practical cases, that data sensed by
different sensors are to some extent spatially correlated [4].
This paradigm shifts the focus from the traditional address-
centric approaches (finding short routes between pairs of
addressable end-nodes) to the so-called data-centric ap-
proach (finding routes from multiple sources to a single des-
tination and allowing in-network consolidation of redun-
dant data). For this reason, data-delivery trees are also re-
ferred to as data-aggregation trees (DA-trees).

Intuitively, due to the dense sensor deployment, many
different DA-trees can be used to relay data from the event
area to the sink, which greatly affects many key perfor-
mance metrics of the WSN, such as network lifetime, en-
ergy consumption, network availability and real-time appli-
cations support. Moreover, the characteristics of DA-trees
may differ in many domains, in primis with respect to en-
ergy consumption, i.e., the energy needed to gather sensed
data to the sink, and also in the latency domain, i.e., the
time needed to deliver data to the sink. According to appli-
cation requirements, energy or latency oriented design ap-
proaches should be pursued.

Previous works considered the problem of minimizing
the energy consumption of a WSN. Chang and Tassiulas
[5],[6] formulate the maximum lifetime routing problem for
a WSN as an integer linear program, and propose heuris-
tic algorithms to determine approximate solutions. In [7],
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a distributed algorithm is presented to determine the maxi-
mum lifetime, based on the Garg-Koenemann [8] algorithm
for multi-commodity flows. In [9], the authors formulate the
maximum lifetime routing problem as a maximum concur-
rent flows problem, and propose a distributed routing algo-
rithm that finds the optimal solution within an asymptoti-
cally small relative error, hence giving lower bounds on its
performance. In [10], a heuristic near-optimal solution is
proposed for the problem of maximum lifetime routing that
can be computed in polynomial time. In [11], the authors
explore the fundamental bounds of WSN lifetime, that al-
low calibrating the performance of collaborative strategies.

In general, in the above papers, the routing issue is dealt
with from an energy consumption standpoint. Conversely,
we extend the analysis to the latency domain. This allows
us to investigate energy-latency trade offs for optimal data
delivery in WSNs. This problem has been previously in-
vestigated in [12]. There, the focus is on minimizing the
energy consumption given a time constraint, by leveraging
the modulation scaling technique. However, the problem of
finding a minimum latency data-delivery tree is not investi-
gated.

The objective of this paper is to provide a wide-ranging
analysis of the impact of different network design strategies
for data gathering. To this aim, we define several optimiza-
tion problems in the energy-latency domain and tackle them
with a multi-target approach. The mathematical framework
proposed here allows the WSN designer to foresee the im-
pact of different design choices on optimal DA-trees as
a function of different performance targets. The presented
results will help the researchers to gain a deeper under-
standing of the fundamental characteristics of WSNs in the
energy-latency domains.

The following of the paper is organized as follows. Sec-
tion 2 introduces the general network model. Section 3
presents a formulation of the optimal data gathering with
static routing problem, while a different model to investi-
gate the problem of re-routing is presented in Section 4. In
Section 5, we draw the main conclusions and outline future
work.

2. Network model

We consider a scenario where wireless sensors are ran-
domly deployed in a bi-dimensional terrain. The network
of sensors is modelled as a graph whose vertexes (sensors)
are represented by the set N , with N = |N |. A subset of
the sensors S � N (in the following referred to as sources)
generates information to be relayed to a sink (in the follow-
ing labeled by O). We denote by dij the Euclidean distance
between sensors i and j, while di denotes the distance be-
tween sensor i and the sink. Each sensor is characterized by
a maximum transmission range TR that accordingly defines

the set Ci of neighbors for the sensor i. The neighbors of
a sensor are the candidate next hops towards the sink. We
assume that transmitting a unit of information from sen-
sor i to sensor j requires a power proportional to dα with
2 ≤ α ≤ 5. In the following, unless otherwise specified, we
assume free space attenuation α = 2.

3. Optimal data gathering with static routing

In this section we analyze optimal data-delivery trees in
dense network scenarios with static routing, i.e., data gath-
ering paths do not change with time. The objective of this
analysis is to investigate the basic interactions between rout-
ing and energy consumption by means of global optimiza-
tion methods.

3.1. Problem formulation

The problem of optimal data gathering in WSNs can be
formulated as a classical network flow transportation prob-
lem [13]. However, a wide subset of such problems has been
proven to be NP-complete [14]. Hence, in order to analyze
large scale networks, we rely on a set of simplifying as-
sumptions:

• sensors can arbitrarily split the traffic that they gener-
ate/relay and accordingly transmit it to several differ-
ent neighbors (multi-path routing). This results in the
linear relaxation of the routing variables, also referred
to as “splittable traffic” [15];

• sensors do not perform data aggregation;

• sensors communicate through an ideal shared medium,
i.e., we do not model contention at the MAC layer or fi-
nite transmission power at the physical layer.

Moreover, without loss of generality, we assume a
continuous-time transmission of information, so that we
can define the following quantities:

• gi is the information flow generated by sensor i and
destined to the sink;

• |S| = N , i.e., all sensors generate the same amount of
information to be sent to the sink, i.e., gi = g, ∀ i ∈
N ;

• q(i, j) is the information flow transmitted 1 from sen-
sor i to sensor j;

• Eij = βdα
ij · q(i, j) is the energy needed to transmit

the flow q(i, j) over a distance dij where β is a con-
stant [Joule/(bits · mα)];

1 Note the different usage of terms transmitted and generated.
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• Ei =
∑

j∈Ci
Eij is the total energy consumption at

sensor i; note that this energy consumption model only
takes into account the radiated power.

With such positions, the objective of minimizing and/or bal-
ancing the network energy consumption can be achieved by
optimally controlling the fraction of information (therefore,
of energy) transmitted by each sensor to each of its neigh-
bors, which defines the multi-path routing strategy for the
whole network. Hence the optimization problem consists of
finding the set of variables q(i, j) (for all sensor pairs (i, j))
that:

• minimizes the maximum energy consumption for a
single sensor Emax = maxi{Ei}, named ROME

(Routing Optimization Maximum Energy);

• minimizes the total energy consumption of the network
Etot =

∑
i=1,N Ei, named ROTE (Routing Optimiza-

tion Total Energy).

Since minimizing the total energy consumption Etot

is equivalent to minimizing the mean energy Emean =
1
N Etot, we provide a Linear Programming (LP) formula-
tion for the general case of mixed optimization, where the
objective function to be minimized is a linear combination
of Emax and 1

N Etot. By tuning the coefficient γ one can
shift from ROME (γ ≈ 1) to ROTE (γ ≈ 0).

Minimize:

γ Emax + (1 − γ) · 1

N
Etot (1)

subject to:

q(i, j) ≥ 0, ∀ j ∈ Ci , ∀ i ∈ N (2)

�

k : i∈Ck

q(k, i) + gi =
�

j∈Ci

q(i, j), ∀ i ∈ N (3)

It is to be noticed that, since we do not consider data
coding/aggregation, the information flow is additive (con-
straint (3)). Hence, we do not need to discriminate between
information flows originated by different sensors (single-
commodity flow problem).

3.2. Analysis of the optimal routing patterns

We implemented the optimization Problem (1) in AMPL
[16] and solved it with CPLEX [17]. To determine the main
characteristics of the optimal data-delivery trees, we aver-
aged over a statistically significant number of scenarios. We
initially set the radio transmission range TR = dmax =
maxi{di}, β = 1 and considered N = 1000 sensors de-
ployed in a circular terrain with radius r = dmax = 1m.
Figure 1 reports the per-sensor energy consumptions Ei for
all the sensors as a function of the distance from the sink di

for different values of γ.

0 0.5 1
0

0.5

1

1.5

E
ne

rg
y 

E
i

1 (ROM
E
)

0 0.5 1
0

0.5

1

1.5 =0.7

0 0.5 1
0

0.5

1

1.5

Norm. distance (d
i
/dmax)

=0 (ROT
E
)

0 0.5 1
0

0.5

1

1.5

Norm. distance (d
i
/dmax)

E
ne

rg
y 

E
i

=0.3

E
mean

(a) (b)

(c) (d)

Figure 1. Per-sensor energy consumption Ei

versus di for different optimization criteria.

In the ROTE case, (γ = 0, Fig. 1 (d)) it is known that
an extremal solution of the Problem (1) exists [13], with ei-
ther q(i, j) = 0 or q(i, j) = g for each (i, j) pair. This solu-
tion represents single-path data routing (non-splittable traf-
fic) from each source towards the sink, e.g., each sensor se-
lects only one next hop. Since the energy consumption of a
sensor is proportional to dα

ij , ROTE minimizes the distance
between each pair of sensors along the data-gathering paths,
e.g., each next hop is close to the corresponding transmit-
ting sensor. Therefore exterior sensors (i.e., sensors far from
the sink) only consume energy to transmit the data they gen-
erate, while interior ones (i.e., sensors close to the sink) also
relay data for other sensors. Hence, the ROTE approach
leads to a higher energy consumption Ei for sensors closer
to the sink.

When γ > 0, a mixed Emax-Etot optimization is per-
formed, and the optimal data-delivery trees are computed
to reduce the maximum energy consumption Emax, at the
price of a higher Etot. For γ ≈ 1 (ROME , Fig. 1(a)), the
objective of minimizing the maximum energy consumption
implies that almost all sensors consume the same energy
(Ei = Emax � Emean). With respect to the routing de-
rived by the ROTE criterium, ROME reduces the Emax

by a factor 8, but Etot is higher by a factor 4.
To better understand how data flows are routed through

the network, we report the normalized energy consumption
Eij/Emax, for each transmission of q(i, j) bits from sen-
sor i to sensor j, for ROTE and ROME (Fig. 2(a) and
2(b), respectively). As discussed above, in the ROTE case
each sensor has one near next hop along the path towards
the sink (di

∼= dj). In particular, we found that 70% of the
times the next hop is the nearest sensor towards the sink
at distance dnear, and 95% of the times it is distant up to
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Figure 2. Normalized energy consumption Eij/Emax for the transmission of q(i, j) bit from sensor i
(at distance di from the sink) to sensor j (at distance dj from the sink) in a 1000 sensors network.

2 · dnear. As a consequence, sensors closer to the sink need
to relay a higher amount of data, thus consuming more en-
ergy. Conversely, when ROME is performed, far transmis-
sions also occur (points with dj � 0 in Fig. 2(b)). These
transmissions are directed to the sink or to sensors closer to
it (namely the far next hops), and are responsible for most
of the energy consumption. Load balancing is achieved by
means of these far transmissions, i.e., each sensor tries to
spend Emax units of energy by routing data over multi-
ple near and far next hops. An interesting point concerns
the number of next hops selected by each sensor. In fact,
the constraint (2) potentially allows its value to reach N .
Surprisingly, we found that the number of next hops is al-
ways very limited: approximately 6% of the sensors have 1
next hop, 86% select 2 next hops and 7% transmit to 3 next
hops (up to 6 in very few cases). In particular, in the case
of 2 next hops, transmissions are almost always directed to
one near next hop, to which most of the data are transmit-
ted, with low energy consumption; and to one far next hop,
to which a smaller amount of data are transmitted, but with
most of the energy consumption.

The differences between ROME and ROTE also have
an impact on the network lifetime. By assuming that the net-
work dies when the first sensor finishes its energy, in the
ROTE case the network lifetime is highly influenced by
the unbalanced use of energy in the sensors. On the con-
trary, in the ROME case all sensors deplete their batteries
at the same time, which can lead to the extended network
lifetime.

We repeated the data-delivery tree analysis with TR <
dmax. In the ROTE case, until the network is connected, a
reduction of the transmission range does not produce signif-
icant changes in optimal data-delivery trees, with respect to
that obtained with TR = dmax, either in terms of number of
the next hops (always one) or in terms of the mean distance
dij . For the ROME , Fig. 2(c) reports the normalized energy

consumption for each transmission when TR = 0.6 · dmax.
The key routing characteristics that we underlined in the
case of TR = dmax continue to hold, but the radio range
constraint causes an overall higher energy consumption. In
fact, as in the ROTE case, exterior sensors that cannot di-
rectly transmit to the sink load interior ones that must spend
more energy. Hence, until TR is sufficiently high to bal-
ance the energy consumption, every sensor consumes the
same energy Emax = Emean (with Emax increasing as TR

decreases), while if TR decreases below a “critical range”
(0.6 · dmax in Fig. 3), the energy consumption cannot be
balanced (in this case Emax > Emean). For small values
of the radio range, ROME data-delivery trees are similar to
the ROTE ones, since every sensor can only transmit data
to a near next hop. This behavior explains the rise of the
Emax and the decrease of the Emean i.e., the total energy
Etot.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

Normalized Transmission Range (T
R

/dmax)

E
ne

rg
y 

C
on

su
m

pt
io

n

Routing Optimization Maximum Energy (ROM
E
)

E
max

E
mean

Figure 3. Max and Mean energy consumption
as a function of the Normalized Transmission
Range TR/dmax for ROME .
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4. Optimal data gathering with re-routing

In this section we introduce a more accurate energy
model, take into account contention at the MAC layer, and
consider data aggregation strategies. The model presented
in this section allows analyzing dynamical scenarios, where
the optimal DA-trees are determined sequentially for dif-
ferent events, thus taking into account the residual energy
at each sensor. Moreover, it captures the interdependen-
cies between the network and medium access control lay-
ers, by considering the latency of the data delivery process.
We focus on single-path data flows, i.e., the splittable traf-
fic hypothesis does not hold. Hence, we provide an Inte-
ger Linear Programming (ILP) formulation. Due to the NP-
completeness of the new problem formulation, in the re-
mainder of the paper only a subset of the sensors gener-
ate data.

As for the energy model, consumption per bit at the phys-
ical layer can be accurately modeled as:

Etrans = Etrans
elec + βdα , Erec = Erec

elec (4)

where Etrans and Erec are the energy consumption at the
transmitter and receiver devices of a sensor, respectively. In
particular, Eelec is a distance independent term that takes
into account overheads of sensor electronics (PLLs, VCOs,
bias currents, etc.) and digital processing [Joule/bits]. As
in [18], we assume that Etrans

elec = Erec
elec = Eelec. The over-

all expression for the transmission of one bit on a wireless
link simplifies to 2 ·Eelec +βdα. We set 2∗Eelec = 570nJ ,
α = 2, while β is dependent on the maximum transmis-
sion range (TR) of the radio device (β = 740nJ/T 2

R). We
further assume that all sensors in S sense correlated infor-
mation. Therefore, each sensor produces packets of g bits,
and when a relay sensor receives two packets from two dif-
ferent nodes, it can aggregate the two packets and send a
single g-bits packet towards the sink (e.g., in the case of
min/max/mean data aggregation functions). Without loss of
generality, we consider g = 1.

We consider a scenario with multiple events. For each
event, the sensors in S generate information (e.g., a data
packet) that has to be delivered to the sink. An optimal DA-
tree is then calculated for that event. Hence, for each event
we calculate a new DA-tree from the sources to sink, on the
basis of the variations in the battery level of the involved de-
vices and achieve an optimal strategy for a dynamical sce-
nario. We refer to this procedure as re-routing. Moreover,
we model the scheduling of data transmissions on the DA-
trees. Transmissions from sensors within reciprocal radio
range are scheduled in different time slots. Multiple time
slots are hence required to gather the information generated
by the sensors in S. We can now introduce the following de-
finitions.

Definition 1 In a multiple events case, the lifetime of the
WSN is the maximum number of events that can be observed
before at least one sensor in S loses connectivity to the sink.

Definition 2 The network latency TMAX for an event is the
total number of time-slots required to gather the informa-
tion generated by the sensors in S for that event, where
T = {1, ..., TMAX} is the set of time slots required to de-
liver the data measured by the sensors in S to the sink.

Definition 3 The sensing coverage of the network is the
portion of the area that is monitored by the sensors, i.e.,
that is within the sensing range of at least one sensor that
has not depleted its battery.

We propose two different formulations of the data de-
livery problem, namely a latency-oriented and an energy-
oriented one. The objective of the former is to find, given
a sequence of events, the sequence of minimum-latency
DA-trees (R2OBL - Re-Routing optimal balancing, latency-
oriented), and the minimum-latency scheduling on those
trees. For each event, the minimum-energy DA-tree is then
selected among those that yield minimum-latency. Con-
versely, the objective of the energy-oriented formulation
is to find the sequence of energy efficient DA-trees, and
then the minimum-latency scheduling on those DA-trees
(R2OBE - Re-Routing optimal balancing, energy-oriented).
Algorithms 1 and 2 describe the steps taken to solve both
problems.

Algorithm 1 R2OBL

1: event ← 0;
2: while all sources are connected do
3: event ← event + 1;
4: Calculate T START ;
5: TMAX ← T START ;
6: found ← false;
7: repeat
8: Calculate the DA-tree, and the associated scheduling in TMAX

time slots, that minimizes the objective function for the event;
9: if solution does not exist in TMAX time slots then

10: TMAX ← TMAX + 1;
11: else
12: found ← true;
13: end if
14: until (not found);
15: Update residual energy at each sensor;
16: end while

17: network lifetime ← event;

In both algorithms, the latency TMAX is calculated by
solving ILPs with increasing latency as input argument
(e.g., 3,4,5 time slots). The first instance of the ILP that ad-
mits a solution defines the minimum latency for the consid-
ered scenario. The value TMAX is initialized to the mini-
mum possible latency for the considered topology, which is
equal to

TSTART = max(h, T ) (5)
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Algorithm 2 R2OBE

1: event ← 0;
2: while all sources are connected do
3: event ← event + 1;
4: Calculate the DA-tree that minimizes the objective function for the

event;
5: Calculate T START ;
6: TMAX ← T START ;
7: found ← false;
8: repeat
9: Calculate a scheduling in TMAX time slots on the minimum-

energy DA-tree;
10: if solution does not exist in TMAX time slots then
11: TMAX ← TMAX + 1;
12: else
13: found ← true;
14: end if
15: until (not found);
16: Update residual energy at each sensor;
17: end while

18: network lifetime ← event;

where h is the distance in hops of the farthest source from
the sink, and T is such that

|S| ≤
T−1∑

i=0

2i (6)

The second member in (6) represents the maximum num-
ber of sources that can reach the sink in T time slots. The
DA-tree in R2OBL is the solution of an ILP problem. Let us
specify the formulation. Suppose that the residual energy of
sensor i is Ei

res(n) at the n-th event. We calculate the mean
Ē(n) of the residual energies at event n:

Ē(n) =
1
N

N∑

i=1

Ei
res(n) (7)

Then, for each link (i, j) we compute eij that is equal to the
minimum between the residual energy at sensors i and j af-
ter the (n+1)-th event, if link (i, j) is used to relay data for
the (n + 1)-th event. Hence,

eij(n+1) = min(Ei
res(n)−Etrans

ij , Ej
res(n)−Erec

ij ) (8)

Finally, we define the cost matrix for re-routing strate-
gies, where the generic element cij has the form

cij =
∣∣eij(n + 1) − Ē(n)

∣∣ (9)

that represents the distance of the residual energy after
the (n+1)-th event, eij(n+1), from the current mean resid-
ual energy of the network Ē(n).

We represent the scheduling with a set of matrices F t,
one for each time slot (1 ≤ t ≤ TMAX ). The element f t

ij

in F t equals 1 if and only if a transmission occurs on link
(i, j) during time slot t. With the definitions above, along
with those in Section 2, we can formulate the ILP as fol-
lows.

Minimize

ctot =
�

t∈T

�

i∈N

�

j∈Ci

f t
ij · cij (10)

with the following conditions:
�

t∈T

�

j∈Ci

f t
ij = 1, ∀i ∈ S (11)

1 ≤
�

t∈T

�

i:O∈Ci

f t
iO ≤ |S| (12)

�

t∈T

�

i:O∈Ci

f t
iO = 0 (13)

�

j∈Ci

f t
ij ≤

t−1�

τ=1

�

k:i∈Ck

fτ
ki, ∀t ∈ T : t > 1, ∀i ∈ N \ {S ∪ O}

(14)
�

j:i∈Cj

f t
ji ≤

TMAX�

τ=t+1

�

k∈Ci

fτ
ik, ∀t ∈ T : t < TMAX , ∀i ∈ N \ O

(15)�

j∈Ci

f1
ij = 0, ∀i ∈ N \ S (16)

�

i:j∈Ci

fTMAX
ij = 0, ∀j ∈ N \ O (17)

�

j∈Ci

(f t
ij + f t

ji) ≤ 1, ∀t ∈ T , ∀i ∈ N (18)

N ·
�

j∈Ci

f t
ij +
�

k∈Ci

�

m:k∈Cm

f t
mk ≤ N,∀i ∈ N , ∀t ∈ T , m �= i

(19)

Equation (10) is the objective function of the problem,
and represents the total cost of the network for the event.
This is obtained by weighing all transmissions, represented
by the elements in F t, for each t ≤ TMAX , with the cost as-
sociated with a transmission on that link. Remember that
the cost matrix measures the gap between the forecasted
residual energy at sensors and the current mean residual en-
ergy of the network, so as to achieve energy balancing. Note
that the DA-tree can be seen as a union of flows, each de-
parting from a source sensor and converging to the sink. A
flow is the set of transmissions from a source to the sink.
Constraints (11), (12), (13), (14) and (15) express conserva-
tion of flows. In particular, constraint (11) imposes that each
source transmit only once. Constraint (12) imposes that the
sink receive at least one and no more than |S| flows, while
constraint (13) requires that the sink do not generate a flow.
Constraints (14) and (15) are related to relay sensors. If a re-
lay sensor transmits a packet in a time slot t∗ ≥ 1, it must
have previously received the packet from another sensor in
a time slot t ≤ t∗. Constraint (16) allows only source sen-
sors to transmit during the first time slot and constraint (17)
imposes that the sink receives the information during the
last time slot. The MAC constraints are imposed by (18)
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Figure 4. Performance analysis of R2OBL and R2OBE as a function of the number of sensors

and (19). According to (18), each sensor can transmit to or
receive from only one sensor in each time-slot. Constraint
(19) is introduced to account for a collision-free MAC pro-
tocol. To this aim we impose that when a sensor i is trans-
mitting to a sensor j, no other sensors in the transmission
range of j can transmit, as it would collide with the recep-
tion of j. Similarly, R2OBE finds the sequence of optimal
DA-trees for each event. Two different ILPs are solved in
each iteration of R2OBE . The first one computes the DA-
tree that minimizes the objective function, and consists of
equations (10)-(13). The second one finds a scheduling for
the transmissions on the DA-tree and consists of the remain-
ing constraints; the tree computed in Step 1 of R2OBE is an
input parameter of the second problem.

4.1. Analysis of the results

In Figs. 4(a), 4(b), 4(c), and 4(d) we show the output
of different optimization runs for R2OBL and R2OBE . The
considered area is a 30m × 30m square, and TR = 5m.
The sink is positioned in the upper right corner, while 5
sources are placed in the lower left corner. In Fig. 4(a), the
lifetime of the network is depicted with varying number of
sensors, from 75 to 200. The lifetime yielded by the two ap-
proaches is very similar, even if R2OBE approach achieves
better performance. Figure 4(b) compares the normalized fi-
nal sensing coverage. We assume that each sensor can mon-
itor a circular area around it with range smaller than TR (in
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Figure 5. Latency and energy trends.

our optimization runs we consider a sensing range of 2m).
The union of all these areas constitutes the sensing cover-
age of the network. When a sensor runs out of energy, it
cannot monitor its area, so the sensing coverage decreases
during the network lifetime. At the end of each optimization
run, we compute the final sensing coverage with respect to
the initial sensing coverage. The sensing coverage is high
for both approaches, but R2OBE performs slightly better
because of the first energy balancing optimization. On the
other hand, in the R2OBL a lower per event mean latency
and mean total energy consumption are achieved by means
of the first latency minimization (see Figs. 4(c) and 4(d) re-
spectively). Figures 5(a) and 5(b) show the variation of the
latency and of the energy consumption during the lifetime
of the network, for R2OBL and R2OBE respectively. For
both approaches, the energy consumption is not steady. In-
stead, it alternatively increases and decreases. This is the
effect of the balancing achieved by distributing energy con-
sumption over time and space. Initially, the chosen DA-tree
is the one with minimum energy cost (because all sensors
have the same energy) and it is located close to the line that
joins the sources to the sink. In succeeding events, the trees
become alternatively wider and closer to that line, in or-
der to distribute the energy consumption over all the region
(as can be seen in the DA-trees depicted in Fig. 6(b) and
6(a)). Also the latency of R2OBE presents an “accordion-
like” behavior. Indeed, the latency increases when trees gets
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wider and viceversa. On the other hand, the latency R2OBL

is monotonically increasing. This makes R2OBL preferable
to R2OBE . In fact, while in terms of energy the two ap-
proaches lead to similar results, R2OBL assures a more pre-
dictable behavior and shorter time to complete events.

5. Conclusion and future work

In this paper we considered the problem of maximiz-
ing the lifetime of a WSN by combining data aggregation,
re-routing and scheduling. We followed an incremental-
complexity approach. First we considered a simple refer-
ence model where data flow routes do not change over time,
multi-path routing is allowed and no data aggregation is in
place. By means of LP optimization we have shown that in
this scenario the energy consumption at all nodes can be
perfectly equalized so as to maximize the network lifetime,
with optimal routing patterns that involve two next-hops for
each node - one close to the transmitter, the other closer to
the sink.

Then, we extended further the model and considered dy-
namic re-routing and scheduling as means to balance the
node energy consumption in time and maximize the net-
work lifetime while maintaining a low data delivery latency.
In fact, lifetime vs. latency emerges as the relevant trade-off
dimension in the dynamic scenario. Two different re-routing
algorithms were proposed and compared. We found that
the R2OBL algorithm displays better latency over R2OBE

with comparable performances regarding energy consump-
tion and lifetime.

The proposed algorithms relay on a centralized view of
the global network state. As a natural extension of this work,
our future efforts will address distributed algorithms that
can scale to large network size and automatically adapt to
changes in the set of sources and to node mobility.
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