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Abstract— This paper deals with scatternet formation in Blue-
tooth. A scatternet is an ad hoc network of Bluetooth devices.
Some works in the literature rely on the single-hop hypothesis,
i.e., all devices are in radio visibility of each other. Other works
refer to the more likely circumstance that devices are scattered
in an area where some of them can not directly communicate.
A challenging issue in this latter scenario (often referred to as
multi-hop) is the design of a formation algorithm that: i) operates
in a distributed way; ii) dynamically adapts the topology to the
mobility of devices; iii) forms a scatternet with given topological
properties. In this paper a distributed algorithm for scatternet
formation that gives rise to a tree-like structure is introduced.
The algorithm is shown to present three key properties that make
it innovative with respect to the literature in the field: i) it is fully
distributed and asynchronous; ii) it can be applied in a multi-hop
environment; iii) it operates in order to dynamically adapt the
topology to nodes’ mobility and failures. The key steps and rules
of the algorithm are described and performance results obtained
by simulation are discussed.

I. INTRODUCTION

Bluetooth (BT) is a promising technology for ad-hoc net-
working. Eight BT devices are interconnected in a piconet and
share the same radio channel which supports about 1 Mbit/s
[1]. Class 3 devices have a transmission range of about 10
meters. Networks without infrastructure can be realized by
means of self-organization and peer to peer communication.
In a piconet two BT devices (also nodes in the following)
exchange information by means of a master-slave relationship.
Master and slave roles are dynamic: the device that starts the
communication is the master, the other one is the slave. A
master can connect with up to 7 slaves. Multiple access in
a piconet is centrally regulated by the master that adopts a
polling scheme on a slotted time structure. Piconets can coexist
in the same area and interconnect in a scatternet. A device that
joins more than one piconet is named gateway and participates
to communications in different piconets on a time-division
basis. Each device can be master in only one piconet.

This paper describes SHAPER, a Self-Healing Algorithm
Producing multi-hop Bluetooth scattERnets, and is organized
as follows. Section II briefly describes works related to the
scatternet formation and discusses properties of SHAPER.
Section IIT presents the key rules and steps that constitute the
SHAPER mechanism, while Section IV discusses numerical
results obtained by simulations. Section V concludes the paper.

II. BLUETOOTH SCATTERNET FORMATION

Scatternet formation in BT has recently received a signif-
icant consideration [2]. Existing solutions can be classified
as single-hop ([3][4][5]) and multi-hop ([6][7][8][9]). Single-
hop solutions assume that all nodes are in radio visibility of
each other. Multi-hop solutions work also when this hypothesis
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does not hold. Paper [3] addresses BT scatternet formation
with a distributed selection of a leader device which assigns
roles to the others. In [4] a distributed formation protocol is
defined, with the goal of reducing formation time and message
complexity. Both [5] and [6] form tree-shaped scatternets. Tan
et al. introduce in [5] the TSF (Tree Scatternet Formation)
protocol; the topology produced is a collection of one or
more rooted spanning trees, each autonomously attempting
to merge with the others and to converge to a unique tree.
TSF assures connectivity only in single-hop scenarios since
trees merge only via root nodes; thus, two different trees can
merge only if their root nodes are in the transmission range
of each other. Zaruba et al. propose a protocol able to operate
also in a multi-hop setting [6]. This latter protocol is based
on a process initiated by a unique node (named blueroot) and
repeated recursively till the leaves of the tree are reached. In
order to operate in a distributed way, and to avoid deadlocks,
the algorithm is based on time-outs that could affect the overall
formation time.

A second class of multi-hop proposals consists of algorithms
that produce connected scatternet by exploiting clustering
schemes for ad-hoc networks. In [7] and [8] the BlueStars
and BlueMesh protocols are described, respectively. These
protocols define rules for device discovery, piconet formation
and piconet interconnection so as to achieve suitable properties
for the scatternet formed. The generated scatternet is a mesh
with multiple paths between any pair of nodes. BlueMesh
allows each master to select at most 7 slaves. Also [9] defines
a protocol that limits to 7 the number of slaves per master by
applying degree reduction techniques to the network topology
graph. The proposed algorithm assumes that each node knows
its position and that of its neighbors.

Finally, we mention a third class of works which concentrate
on scatternet topology optimization. This issue is faced for the
first time in [10] and [12] by adopting centralized approaches.
In [10] the aim is minimizing the load of the most congested
node in the network, while [12] discusses the impact of
different metrics on the scatternet topology. A distributed
approach based on simple heuristics is presented in [11].

As in [5] and [6] our algorithm, named SHAPER, forms
a scatternet with a tree-like topology. To the best of our
knowledge, SHAPER is the first multi-hop algorithm which
guarantees a self-healing behavior: i.e., it is able to dynami-
cally reconfigure the scatternet after topological variations due
to mobility or failure of nodes. The deployment of scheduling
algorithms and ad hoc routing schemes becomes easy on
a tree topology, as also noted in [5]. Furthermore, the re-
configuration of the network can be obtained by merging
different trees. Finally, the distribution of network control
information is straightforward. The latter feature deserves
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some discussion. Existing scatternet formation algorithms are
not specifically concerned with the nature of the information
to be exchanged. A tree topology may not be the best choice
to transfer user information since there is a single path
between any couple of nodes. Some of them can easily become
bottlenecks. However, it is needed that nodes self-organize to
guarantee a broadcast-like facility as quickly as possible. This
broadcast segment can be used to efficiently disseminate con-
trol and management information in the network to eventually
obtain a more suitable topology. A tree topology may be very
convenient to this aim, if two key conditions are met: i) the
network is easily reconfigurable after nodes have joined or
left the system; ii) the scatternet formation or reconfiguration
delay is within a reasonable amount of time. In particular, we
have already deployed algorithms that exploit the tree as a
platform to transport control information. This information is
used to reconfigure and optimize the topology in accordance
to user needs expressed by performance metrics. An example
of such metrics can be found in [12].

III. THE SHAPER ALGORITHM

The SHAPER algorithm here proposed is based on dis-
tributed procedures which run on every network node. Two
main phases can be outlined:

1) device discovery and communication;

2) tree formation.

The first phase is dedicated to device discovery and to estab-
lishing links that are included in a tree in a second phase. In
the second phase, trees that have separately grown are also
merged. The network converges to a unique connected tree
always and only when the adjacency graph is connected. For
every link in the tree, the master is always the parent and the
child is the slave. All nodes continuously alternate between
phases 1) and 2); this, as will be explained in the following,
assures a self-healing behavior.

A. Device discovery and communication

This phase has been designed following the approach pro-
posed in [5]. The status of a SHAPER node can be: free,
root or non-root. A node is free (F) when it switches on
or when, being in a tree as a leaf, it loses its parent. A
node already included in a tree is in the root (R) or non-root
(N R) status. Depending on its status, a node moves among
five possible states: Inquiry (INQ), InquiryScan (INQSC), Page
(PG), PageScan (PGSC) and Communication (COMM) (see
Figure 1).

At the beginning, an F' node can only be in the INQ or
INQSc states. In the INQ state the BT Inquiry procedure is
performed for a time period of at most T3, seconds. If during
this period a node discovers another, then the two connect
with the Page and PageScan procedures respectively. The
persistence in each of these two states is regulated by timers
(Tpg and T)gsc). If the Page/PageScan procedures succeed, a
master-slave relationship between the two nodes is activated, a
link is established, and the two nodes enter the TreeFormation
procedure. If the Page/PageScan procedures fail, both nodes
randomly enter a new INQ or INQSC. The behavior of a
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node in INQSC is specular and adopts a T, qs. timeout. After
TreeFormation, nodes become R or NR and, on the basis
of a random choice, either go back to the INQ or INQSC
state, or they enter the COMM state where are involved only
in data communications and not in scatternet formation. Data
are exchanged for a randomly extracted time period (Tcomm.
uniformly distributed between 71;,,;,, and 1,4, seconds). After
this period a node, with a given probability, re-enters the INQ
or INQSC states.

INQ/INSC

=
&

random

Fig. 1. Main flow chart

B. Tree Formation

The TreeFormation procedure represents the core of the
SHAPER algorithm and includes the innovative aspects of the
approach. The goals of this procedure are: i) inserting free
nodes in a tree; ii) merging, by avoiding loops, trees that have
formed in previous iterations; iii) guaranteeing self-healing
behaviour.

A non-free node (node 7) belongs to the tree 7;; during the
TreeFormation it stores and up-dates the following parameters:

1) TREE_ID;, i.e., the BT Device ADDRess (BD_ADDR)
of the root of the tree T;; this information univocally
identifies all nodes in the same tree;

2) N,=current number of nodes in T;;

3) Nidesc: current number of descendants of node 7 in Tj;

4) the node’s status (F', R and NR).

A node can send four different kind of messages: Init,
StartReconf, UpdateParameters, UpdateNDesc. Each
message includes a sub-set of the previous parameters as
reported in TABLE 1.

MESSAGE NAME TREE.ID | N [ N?%¢ | node status
Init X X - X
StartReconf X X - -
UpdateParameters X X - -
UpdateNDesc X X X -
TABLE 1

SHAPER MESSAGES AND PARAMETERS

To describe the TreeFormation procedure, we refer to a
master-slave couple that establishes a link in the initial phase
of Figure 1. We call the nodes M4 and Sp. If they both are
non-free nodes, then they respectively belong to the T4 and Tz
trees. The link between the two is referred to as L 4 g. After the
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connection has been established, M 4 sends a Init message
to Sp. Sp verifies if M 4’s TREE_ID equals its TREE_ID. In
this case Lap would certainly produce a loop and must be
torn down. If the TREE_IDs of the two nodes are different,
Sp continues the procedure. The subsequent steps depend on
the status of the two nodes. Different actions are foreseen
(TABLE II): we will refer to them as merging procedures. A
pseudo-code for these procedures is given below.

TreeFormation

M, : send to Sp Init

1f (TREEIDy, = TREE IDgy)
disconnect (M4, Sg)

else
execute merging procedure

as a function of (M4's status, Sp’s status)

Sg\Mas | R | NR]| F
R AL | A | A3
NR As Ay As
F A2 AQ AQ
TABLE 11

MERGING PROCEDURES

[A1]: 1f (Nar, > Nsp)
S, My :
else

LMP MasterSlaveSwitch (newMa=Sp, newSp=My)

newM s ,newSp: re-enter TreeFormation

send to children UpdateParameters

2|: Sp: send to children UpdateParameters

My : send to parent UpdateNDesc

3 |: LMP.MasterSlaveSwitch
re-enter TreeFormation

(newM=Sp, newSg=My,)
newM 4 ,newSp :

BERENE

4|: 1f (Npmy, < Ngg)

LMP MasterSlaveSwitch (newMa=Sp, newSp=M,)
newM s ,newSp: re-enter TreeFormation
else
My : send to parent UpdateNDesc

repeat until initial root of Tp is reached
Sp: send to Fp StartReconf;

Fp: update Npp and TREE IDpg,

send to children (excluding Sp) UpdateParameters;

LMP_MasterSlaveSwitch
(newFp=parent of Sp, newSp=Fp)

Case A; applies when both M4 and Sp are R. Their two
trees can simply merge. The only decision regards which
device will be the new root: we assume that it is always
the R with the biggest N. If it is M4, then L 4p maintains
the initial configuration; Sp acknowledges M, and sends
to its sons a UpdateParameters message containing the
new TREE_ID and the new N=Nj;,+Ng,; after receiving
the ACK, M4 also sends the new N value to its children
through a UpdateParameters message. Nodes receiving a
UpdateParameters update their N and TREE_ID param-
eters with the values included in the message, and propagate
the same message to their children.

If Ny, > Nsg, Lap has to be switched, i.e. M4 and
Sp must exchange their roles; this is done by means of the
BT LMP_MasterSlaveSwitch procedure. After the switch, the
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nodes execute again TreeFormation with the new roles.

In the A5 case, the link L 45 needs not to be switched. Sp
simply acknowledges M 4 and sends the UpdateParameters
message to its children; M4 sends a UpdateNDesc message
to its parent. Whenever a node receives an UpdateNDesc
message, on its turn it forwards it to its parent and sends an
UpdateParameters message with the new value for N to
its children (excluding the one that sent the UpdateNDesc).
The UpdateNDesc message is thus used to update the value
of N3¢ and is always sent in the child-to-parent direction.

In As, nodes simply switch the link L4p and re-execute
TreeFormation with the new roles.

Finally, in case A4 two N R nodes meet. One of the two
trees must be reconfigured, i.e., one of the N R nodes must
become root of its tree in order to correctly merge with the
other tree. Again we choose to reconfigure the tree with the
lowest value of /V; without loss of generality we assume that
the tree to be reconfigured is the one where Sp is. Otherwise
the LMP_MasterSlaveSwitch is applied and TreeFormation is
executed again.

The reconfiguration of the tree is obtained by recursively
applying in T'g the following three steps, performed by a child-
parent pair, from the node which starts the reconfiguration up
to the root. The node which starts the process is Sp and its
parent in T’p is referred to as Fp (see Figure 2). The node
Sp sends a StartReconf message to its parent Fp and an
UpdateParameters to its children. Both messages include
the new N=Nj;,+Ng, and the TREE_ID value of T4. Fp
sends an UpdateParameters to all of its children, excluding
Sp, and forwards the StartReconf message to its parent.
An LMP_MasterSlaveSwitch is performed after that between
Sp and Fg. These steps are then repeated from Fp towards
its parent and the process continues until the initial root of
Tg is reached. At this moment Sg is the new root of Ts and
T4 is merged with T’p. This gives rise to a unique tree whose
root is the initial root of 7T)4. While 7’5 is being reconfigured,
M4 updates it descendants and propagates a UpdateNDesc
towards the root of 1T'4.

(1) StartReconf
(2) ChangeParameters
(3) LMP_Switch

(4) ChangeNDesc

Fig. 2. Tree reconfiguration: Sp becomes the new root of T and T is
included in T4

To prevent from multiple reconfigurations happening at
the same time, we introduced a simple mechanism based on
request/permission and lock/unlock messages, managed by the
root of the tree. A VR node asks for a permission to start the
reconfiguration from the R, by sending a message towards the
root. The root sends back an authorization and implicitly locks
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all other nodes until the reconfiguration has ended.

In the TreeFormation, whenever a slave tries to connect to
a master which already has 7 children, i.e., 7 slaves in its
piconet, an adjunctive SHAPER procedure is called, which
relies on a property demonstrated in [6]. If a node has more
than 5 neighbors, then at least 2 of them are neighbors
themselves. Thus, the master temporarily parks the entering
slave and forces the set-up of a link between two of its
children; then the parked slave is waken up and becomes
an active child in the tree. Our simulations showed that this
situation is very unlikely to happen.

C. Self-healing behavior

SHAPER guarantees a self-healing behavior of the network
by rapidly including nodes entering the network and by re-
configuring the scatternet topology when a node abandons the
network or moves. In the former case, the incessant iteration of
a node in all states of Figure 1 assures that new nodes always
have the opportunity to enter the network. As for the second
case, when a node loses connectivity with its parent, it assumes
that it has moved or switched off and becomes a R node. As
a consequence it sends a UpdateParameters message to all
of its children. This contains its BD_ADDR in the TREE_ID
field and its N?€5¢ in the N field. On the contrary, when a
parent node loses its child, it must update the total number of
nodes in the tree. To this aim it requests the N%°¢ values from
its active sons. Once N has been updated the parent sends to
all its children a UpdateParameters.

IV. PERFORMANCE RESULTS

In this section simulation results of scatternet formation
with SHAPER are presented. The algorithm was implemented
on Blueware, a public ns-2 simulator developed by MIT’s
researchers ([13]). We measured the behavior of the protocol
in both single-hop and multi-hop scenarios. In the first case
we randomly distributed nodes in a square area of side 7 m,
thus assuring that all devices are in radio visibility. In this case
we also compared our results with [5]. In the multi-hop case
we scattered nodes so as to obtain a mean visibility per node
around 30% of the total number of generated nodes. Since
Blueware does not implement an interference model, results
on the formation time must be considered as lower bounds
when the nodes’ density is high.

As for the parameters adopted in the procedures of Figure 1,
we set: T5,q=10.24 s, T q5c=1.28 5, Tjg=1.28 5, T})g5c ~ 1 s,
Tnin=2.125 s and T},,4,=5.95 s. The two parameters related
to T.omm has been selected in order to give a higher weight
to the time spent in the discovery states rather than in the
communication state. The time spent in the COMM state can
be adaptively increased when the network topology becomes
more stable.

A. Performance comparison

We compared SHAPER with the single-hop TSF algorithm
implemented in Blueware, in the same scenarios. First, we
evaluated the mean formation time (MFT); that is the mean
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value of the time needed to obtain a unique connected tree.
Figure 3 shows the MFT as a function of the number of
nodes (N). When TSF is adopted, the MFT increases with
N; this depends on the fact that only coordinator nodes can
discover different trees and only root nodes can merge them.
As N increases, the time spent by a coordinator to find nodes
increases too. On the contrary, SHAPER connects trees via
both R and NR (as shown in the example of Figure 2). As
the node density increases, the probability that nodes meet
increases too. This gives rise to a MFT that remains around
6.5 seconds for NV > 20.

The scatternets formed when N ranges between 10 and 120
have an average number of piconets ranging from 5 to 75 for
SHAPER and from 5 to 65 for TSFE. Also the average number
of roles assigned to a device is comparable: for N > 40, each
node assumes 1.5 roles with TSF and 1.6 roles with SHAPER.
The scatternets generated are similar in terms of number of
piconets, number of slaves in a piconet, number of leaves.

B. Multi-hop Scenarios

The MFT was evaluated in a multi-hop scenario as a
function of the number of nodes for different sizes of the
geographical area where the nodes are scattered (Figure 4).
As in the single-hop scenario, the MFT initially decreases as
N increases and then remains quite flat. As expected, MFT
also increases with the size of the area. This result is also
reported in Figure 5 where the trend of the MFT as a function
of geographical area dimensions is shown. We can conclude
that the MFT strongly depends on the node density in a given
area. However, after a certain low density threshold has been
reached, the formation time is not affected anymore.

In TABLE III the number of StartReconf messages ex-
changed in the network for different values of /N are reported
for both single-hop and multi-hop scenarios. Although a high
number of reconfiguration procedures is time-consuming, it
allows the merging procedures to operate regardless of the
status of the nodes. This assures a reasonable formation delay
even in multi-hop scenarios.

Number of nodes | 40 | 80 | 100 | 120
Single-Hop case 16 | 77 | 107 | 140
Multi-Hop case 13 | 67 | 97 128

TABLE III
NUMBER OF STARTRECONF MESSAGES EXCHANGED

C. Self-Healing behavior

To measure the self-healing behavior of SHAPER we con-
sidered the time needed to obtain a unique connected scatternet
after an “en mass” arrival of a second group of nodes. All
nodes are in radio visibility of each other in an area of 7x7
m?2. With reference to Figure 6, a certain percentage of the
nodes on the x axis arrives after a scatternet with the other
nodes has formed. We considered different percentages for the
second group of nodes (25%, 50%, 75%). The time needed to
accommodate the incoming nodes in the network, namely the
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incremental formation time, is reported. This is shown to be
inversely proportional to the percentage of nodes arriving with
the second burst and is less than 8.5 s for V > 20.

—= TSF
—+— SHAPER

Mean formation time (sec)
s

4 L L L L L |
0 20 40 60 80 100 120

Number of nodes

Fig. 3. Formation time: performance comparison between TSF and SHAPER

Mean formation time (sec)

L L L L L ! ¥
20 30 40 50 60 70 80 920 100 110 120

Number of nodes

Fig. 4. Formation time, multi-hop scenarios

B
& 18f
o
£
= 161
<
8
T
£ 14f
k3
c
8 12
g —&— 20 nodes
40 nodes
10 —+=60 nodes
8l
0 1000 2000 3000 4000 5000 6000

Size of geographic area (mz)

Fig. 5.
scenarios

Formation time as a function of the geographic area, multi-hop

V. CONCLUSIONS

In this paper a distributed algorithm that forms BT scat-
ternets with a tree topology was described. The innovative
features of the algorithm with respect to the literature, i.e.
the combination of a self-healing behavior and of multi-hop
properties, were described. Results show that the scatternet
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Fig. 6. Incremental formation time in a self-healing scenario

formation time is maintained under reasonable values, even
when tree reconfiguration procedures have to be applied to
merge trees that meet via non-root nodes. Future work will
be dedicated to use the tree as a facility to rapidly propagate
control information across the network. These control mes-
sages will be aimed at re-arranging periodically the scatternet
topology in order to “optimize” the network performance un-
der specific user requirements (e.g, delay, throughput, energy
consumption).
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