CE 530 Molecular Simulation

1

Lecture 9 Monte Carlo Simulation

David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu

Review

2

• We want to apply Monte Carlo simulation to evaluate the configuration integrals arising in statistical mechanics

$$\langle U \rangle = \frac{1}{N!} \int dr^N U(r^N) \frac{e^{-\beta U(r^N)}}{Z_N} \pi(r^N)$$

O Importance-sampling Monte Carlo is the only viable approach

• unweighted sum of U with configurations generated according to distribution $e^{-\beta U}/Z_N$

O Markov processes can be used to generate configurations according to the desired distribution $\pi(r^N)$.

- *Given a desired limiting distribution, we construct single-step transition probabilities that yield this distribution for large samples*
- Construction of transition probabilities is aided by the use of detailed balance: $\pi_i \pi_{ij} = \pi_j \pi_{ji}$
- The Metropolis recipe is the most commonly used method in molecular simulation for constructing the transition probabilities

Monte Carlo Simulation

O MC techniques applied to molecular simulationO Almost always involves a Markov process

• move to a new configuration from an existing one according to a well-defined transition probability

O Simulation procedure

- generate a new "trial" configuration by making a perturbation to the present configuration
- accept the new configuration based on the ratio of the probabilities for the new and old configurations, according to the Metropolis algorithm
- if the trial is rejected, the present configuration is taken as the next one in the Markov chain
- repeat this many times, accumulating sums for averages

Trial Moves

O A great variety of trial moves can be madeO Basic selection of trial moves is dictated by choice of ensemble

- *almost all MC is performed at constant T* no need to ensure trial holds energy fixed
- *must ensure relevant elements of ensemble are sampled* all ensembles have molecule displacement, rotation; atom displacement isobaric ensembles have trials that change the volume grand-canonical ensembles have trials that insert/delete a molecule

• Significant increase in efficiency of algorithm can be achieved by the introduction of clever trial moves

- reptation, crankshaft moves for polymers —
- multi-molecule movements of associating molecules
- many more

General Form of Algorithm

Simulation API: Integrator

O Integrator

- repeatedly changes configuration to follow a sampling algorithm
- *public void doStep()*
- *deploys subclass-specific agent to each atom*
- only one integrator acts on a given box
- some integrators act on multiple boxes
 IntegratorGEMC (Gibbs ensemble Monte Carlo)
 IntegratorPT (Parallel tempering)

O IntegratorMD

- IntegratorVelocityVerlet
- IntegratorHard

discontinuous molecular dynamics

O IntegratorMC

Simulation API: IntegratorMC

O IntegratorMC

- Monte Carlo sampling
- Selects trial move, performs trial, decides acceptance, notifies move and other listeners

O MCMove

- Performs Monte Carlo trial
- Reports information needed to determine acceptance ln(π_{new}/π_{old}), ln(τ_{ij}/τ_{ji}) Holds fields needed for evaluation
- Does appropriate update for acceptance or rejection
- For example MCMoveAtom MCMoveInsertDelete MCMoveRotateMolecule MCMoveVolume
- Sampled ensemble is determined by set of MCMoves added to integrator

O Gives new configuration of same volume and number of moleculesO Basic trial:

O Gives new configuration of same volume and number of moleculesO Basic trial:

• *a randomly selected atom*

Select an atom at random

O Gives new configuration of same volume and number of moleculesO Basic trial:

a randomly selected atom <mark>a cubic volume of edge 2δ</mark>

O Gives new configuration of same volume and number of moleculesO Basic trial:

a randomly selected atom a cubic volume of edge 2δ centered on the current

position of the atom

Consider a region about it

O Gives new configuration of same volume and number of moleculesO Basic trial:

• displace a randomly selected atom to a point chosen with uniform probability inside a cubic volume of edge 2δ centered on the current position of the atom

Move atom to point chosen uniformly in region

O Gives new configuration of same volume and number of moleculesO Basic trial:

• displace a randomly selected atom to a point chosen with uniform probability inside a cubic volume of edge 2δ centered on the current position of the atom

Consider acceptance of new configuration

O Gives new configuration of same volume and number of moleculesO Basic trial:

- displace a randomly selected atom to a point chosen with uniform probability inside a cubic volume of edge 2δ centered on the current position of the atom
- O Limiting probability distribution
 - canonical ensemble

$$\pi(\mathbf{r}^N)d\mathbf{r}^N = \frac{1}{Z_N}e^{-\beta U(\mathbf{r}^N)}d\mathbf{r}^N$$

Examine underlying transition probabilities to formulate

acceptance criterion

• for this trial move, probability ratios are the same in other common ensembles, so the algorithm described here pertains to them as well

Displacement Trial Move 2. Analysis of Trial Probabilities

16

O Detailed specification of trial moves and probabilities

Event [reverse event]	Probability [reverse probability]	Forward-step trial $\frac{1}{N} \times \frac{1}{v} \times \min(1, \chi)$
Select molecule k [select molecule k]	1/N [1/N]	Reverse-step 1 1
Move to r ^{new} v [move back to r ^{old}]	$ = (2\delta)^{d} \longrightarrow 1/v $ $ [1/v] $	$\underbrace{\begin{array}{c} trial \\ probability \end{array}}_{v} \frac{1}{N} \times \frac{1}{v} \times \min(1, \frac{1}{\chi})$
Accept move [accept move]	$\min(1,\chi) \leftarrow \min(1,1/\chi)$	$-\chi$ is formulated to satisfy detailed balance

Displacement Trial Move3. Analysis of Detailed Balance

Displacement Trial Move3. Analysis of Detailed Balance

Forward-step trial probability

$$\frac{1}{N} \times \frac{1}{v} \times \min(1, \chi)$$

 $\begin{pmatrix} Reverse-step \\ trial \\ probability \end{pmatrix} = \frac{1}{N} \times \frac{1}{v} \times \frac{$

 $\frac{1}{N} \times \frac{1}{v} \times \min(1, \frac{1}{\chi})$

Detailed balance

$$\pi_{i} \qquad \pi_{ij} \qquad = \qquad \pi_{j} \qquad \pi_{ji}$$

$$\frac{e^{-\beta U^{old}} d\mathbf{r}^{N}}{Z_{N}} \left[\frac{1}{N} \times \frac{1}{v} \times \min(1, \chi) \right] = \frac{e^{-\beta U^{new}} d\mathbf{r}^{N}}{Z_{N}} \left[\frac{1}{N} \times \frac{1}{v} \times \min(1, \frac{1}{\chi}) \right]$$

$$\underset{distribution}{Limiting} \pi(\mathbf{r}^{N})d\mathbf{r}^{N} = \frac{1}{Z_{N}}e^{-\beta U(\mathbf{r}^{N})}d\mathbf{r}^{N}$$

Displacement Trial Move3. Analysis of Detailed Balance

$$e^{-\beta U^{old}}\chi = e^{-\beta U^{new}}$$

Acceptance probability

19

Displacement Trial Move 4. Simulation Example

Have a look at a simple MC simulation applet

If the link doesn't work, enter this URL in your browser:

http://www.eng.buffalo.edu/~kofke/applets/SimpleMC.html

Displacement Trial Move 5. Tuning

- O Size of step is adjusted to reach a target rate of acceptance of displacement trials
 - typical target is 50%
 - for hard potentials target may be lower (rejection is efficient)

Large step leads to less acceptance but bigger moves

Small step leads to less movement but more acceptance

O Gives new configuration of different volume and same N and s^N
O Basic trial:

O Gives new configuration of different volume and same N and s^N
O Basic trial:

by some amount within $\pm \delta V$

Select a random value for volume change

O Gives new configuration of different volume and same N and s^N
O Basic trial:

• *increase or decrease the total system volume* by some amount within $\pm \delta V$,

Perturb the total system volume

O Gives new configuration of different volume and same N and s^N
 O Basic trial:

• increase or decrease the total system volume by some amount within $\pm \delta V$, scaling all molecule centers-of-mass in proportion to the linear scaling of the volume

Scale all positions in proportion

O Gives new configuration of different volume and same N and s^N
O Basic trial:

• increase or decrease the total system volume by some amount within $\pm \delta V$, scaling all molecule centers-of-mass in proportion to the linear scaling of the volume

Consider acceptance of new configuration

- O Gives new configuration of different volume and same N and s^N
 O Basic trial:
 - increase or decrease the total system volume by some amount within $\pm \delta V$, scaling all molecule centers-of-mass in proportion to the linear scaling of the volume
- O Limiting probability distribution
 - *isothermal-isobaric ensemble*

Examine underlying transition probabilities to formulate acceptance criterion

$$\pi\left(\left(V\mathbf{s}\right)^{N}\right) = \frac{1}{\Delta}e^{-\beta U\left(\left(V\mathbf{s}\right)^{N}\right) - \beta PV}V^{N}d\mathbf{s}^{N}dV$$

Remember how volumescaling was used in derivation of virial formula

Volume-change Trial Move 2. Analysis of Trial Probabilities

28

O Detailed specification of trial moves and probabilities

Event [reverse event]	Probability [reverse probability]	$ \begin{cases} Forward-step \\ trial \\ probability \end{cases} \frac{1}{2\delta V} \times \min(1,\chi) \end{cases} $
Select V ^{new} [select V ^{old}]	1/(2 δV) [1/(2 δV)]	$\begin{array}{c} \hline Reverse-step \\ trial \\ \hline \end{array} \xrightarrow{1} \times \min(1, \frac{1}{2}) \end{array}$
Accept move [accept move]	$\begin{array}{c} \operatorname{Min}(1,\chi) \\ [\operatorname{Min}(1,1/\chi)] \end{array}$	probability $2\delta V$ (* χ)
		χ is formulated to satisfy detailed balance

Volume-change Trial Move3. Analysis of Detailed Balance

Volume-change Trial Move4. Alternative Formulation

O Step in ln(V) instead of V

• larger steps at larger volumes, smaller steps at smaller volumes

$$Limiting distribution \quad \pi((Vs)^{N}) = \frac{1}{\Delta} e^{-\beta U((Vs)^{N}) - \beta PV} V^{N+1} ds^{N} d\ln V$$

$$Trial \ move \quad V^{new} = V^{old} e^{\delta(\ln V)} \qquad (\ln V)^{new} = (\ln V)^{old} + \delta(\ln V)$$

$$Acceptance \\ probability \\ min(1,\chi) \qquad \chi = \exp\left[-\beta(\Delta U + P\Delta V) + (N+1)\ln(V^{new}/V^{old})\right]$$

Volume-change Trial Move 5. Simulation Example

Have a look at a <u>simple NPT MC simulation applet</u>

If the link doesn't work, here's the URL:

http://www.eng.buffalo.edu/~kofke/applets/nptMCLJ.html

Summary

O Monte Carlo simulation is the application of MC integration to molecular simulation

- O Trial moves made in MC simulation depend on governing ensemble
 - many trial moves are possible to sample the same ensemble
- O Careful examination of underlying transition matrix and limiting distribution give acceptance probabilities
 - particle displacement
 - volume change
- O Next up: simple biasing methods