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2 Monte Carlo Integration: Review 
¡ Stochastic evaluation of integrals 

•  sum integrand evaluated at randomly generated points 
•  most appropriate for high-dimensional integrals 

error vanishes more quickly (1/n1/2) 
better suited for complex-shaped domains of integration 

¡ Monte Carlo simulation 
•  Monte Carlo integration for ensemble averages 

 
 

¡ Importance Sampling 
•  emphasizes sampling in domain where integrand is largest 
•  it is easy to generate points according to a simple distribution 
•  stat mech π distributions are too complex for direct sampling 
•  need an approach to generate random multidimensional points 

according to a complex probability distribution 
•  then integral is given by  
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Markov Processes 

¡ Stochastic process 
•  movement through a series of well-defined states in a way that 

involves some element of randomness 
•  for our purposes,“states” are microstates in the governing 

ensemble 
¡ Markov process 

•  stochastic process that has no memory 
•  selection of next state depends only on current state, and not on 

prior states 
•  process is fully defined by a set of transition probabilities πij  

πij = probability of selecting state j next, given that presently in state i. 
Transition-probability matrix Π collects all πij  
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Transition-Probability Matrix 

¡ Example 
•  system with three states 

¡ Requirements of transition-probability matrix 
•  all probabilities non-negative, and no greater than unity 
•  sum of each row is unity 
•  probability of staying in present state may be non-zero 

11 12 13

21 22 23

31 32 33

0.1 0.5 0.4
0.9 0.1 0.0
0.3 0.3 0.4

π π π
π π π
π π π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Π ≡ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

If in state 1, will move to state 3 
with probability 0.4 

If in state 1, will stay in state 1 
with probability 0.1 

Never go to state 3 from state 2 
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Distribution of State Occupancies 

¡ Consider process of repeatedly moving from one state to the 
next, choosing each subsequent state according to Π	

•  1→ 2 → 2 → 1→3 → 2 → 2 → 3 → 3 → 1 → 2 → 3 → etc. 

¡ Histogram the occupancy number for each state 
•  n1 = 3   π1 = 0.33 
•  n2 = 5   π2 = 0.42 
•  n3 = 4   π3 = 0.25 

¡ After very many steps, a limiting distribution emerges 
¡ Click here for an applet that demonstrates a Markov process 

and its approach to a limiting distribution	


1	
 2	
 3	
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¡ Consider the product of Π with itself 

¡ In general       is the n-step transition probability matrix 
•  probabilities of going from state i to j in exactly n steps 

The Limiting Distribution 1. 

11 12 13 11 12 13
2

21 22 23 21 22 23

31 32 33 31 32 33

11 11 12 21 13 31 11 12 12 22 13 32

21 11 22 21 23 31 21 12 22 22 23 32

31 11 32 21 33 31 31 12 32 22

.

.
etc
etc

π π π π π π
π π π π π π
π π π π π π
π π π π π π π π π π π π
π π π π π π π π π π π π
π π π π π π π π π π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Π ≡ ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+ + + +
= + + + +

+ + + 33 32 .etcπ π

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

All ways of going from state 
1 to state 2 in two steps 

Probability of going from 
state 3 to state 2 in two steps 

nΠ
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( ) ( ) ( )
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31 32 33
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⎜ ⎟Π ≡
⎜ ⎟
⎜ ⎟⎝ ⎠

( )defines n
ijπ
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The Limiting Distribution 2. 

¡ Define        as a unit state vector 

¡ Then                        is a vector of probabilities for ending at 
each state after n steps if beginning at state i 

¡ The limiting distribution corresponds to n → ∞ 
•  independent of initial state  

( ) ( ) ( )(0) (0) (0)
1 2 31 0 0 0 1 0 0 0 1π π π= = =

( ) (0)n
i i

nπ π≡ Π
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⎜ ⎟
⎜ ⎟⎝ ⎠
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The Limiting Distribution 3. 

¡ Stationary property of π	


¡ π is a left eigenvector of Π with unit eigenvalue 
•  such an eigenvector is guaranteed to exist for matrices with rows 

that each sum to unity 

¡ Equation for elements of limiting distribution π 	
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π
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→∞

−
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⎡ ⎤= Π⎣ ⎦

⎡ ⎤= Π Π⎣ ⎦
= Π

i j ji
j

π π π=∑ 1 1 2 3

2 1 2 3

3 1 2 3

1 2 3 1 2 3

0.1 0.9 0.3
0.1 0.5 0.4

0.5 .1 0.3
. .  0.9 0.1 0.0

0.4 0.0 0.4
0.3 0.3 0.4

e g

π π π π
π π π π
π π π π
π π π π π π

= + +
⎛ ⎞ = + 0 +⎜ ⎟Π = ⎜ ⎟ = + +⎜ ⎟⎝ ⎠ + + = + +
not independent 
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¡ Eigenvector equation for limiting distribution 
•    

¡ A sufficient (but not necessary) condition for solution is 
•    
•  “detailed balance” or “microscopic reversibility”  

¡ Thus 
•    

Detailed Balance 

i j ji
j

π π π=∑

i ij j jiπ π π π=

i j ji
j

i ij
j

i ij i
j

π π π

π π

π π π

=

=

= =

∑

∑

∑

0.1 0.5 0.4

0.9 0.1 0.0

0.3 0.3 0.4

Π =

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

For a given Π, it is not always 
possible to satisfy detailed 
balance; e.g. for this Π 

 3 32 2 23π π π π≠

zero 
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Deriving Transition Probabilities 

¡ Turn problem around... 
¡ …given a desired π, what transition probabilities will yield 

this as a limiting distribution? 
¡ Construct transition probabilities to satisfy detailed balance 
¡ Many choices are possible 

•  e.g.  
•  try them out 

( )0.25 0.5 0.25π =

0.0 0.5 0.5
0.25 0.5 0.25
0.5 0.5 0.0

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟⎜ ⎟⎝ ⎠

0.42 0.33 0.25
0.17 0.66 0.17
0.25 0.33 0.42

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟⎜ ⎟⎝ ⎠

0.97 0.02 0.01
0.01 0.98 0.01
0.01 0.02 0.97

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟⎜ ⎟⎝ ⎠

0 1 0
0.5 0 0.5
0 1 0

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟⎜ ⎟⎝ ⎠

Metropolis Barker 

Least efficient 

Most efficient 
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Metropolis Algorithm 1. 

¡ Prescribes transition probabilities to satisfy detailed balance, 
given desired limiting distribution 

¡ Recipe:   
From a state i… 
•  with probability τij, choose a trial state j for the move (note: τij = τji)  
•  If πj > πi, accept j as the new state 
•  otherwise, accept state j with probability πj/πi 

generate a random number R on (0,1); accept if R < πj/πi 

•  if not accepting j as the new state, take the present state as the next 
one in the Markov chain  

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, 
J. Chem. Phys., 21 1087 (1953) 

( )0iiπ ≠
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Metropolis Algorithm 2. 
¡ What are the transition probabilities for this algorithm? 

•  Without loss of generality, define i as the state of greater probability 
 

¡ Do they obey detailed balance? 

¡ Yes, as long as the underlying matrix Τ of the Markov chain is 
symmetric 
•  this can be violated, but acceptance probabilities must be modified 

i jπ π>

in general:  min ,1jij ij
i

π
π τ

π
⎛ ⎞⎛ ⎞
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⎝ ⎠⎝ ⎠
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=
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=
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Markov Chains and Importance Sampling 1. 

¡ Importance sampling specifies the desired limiting distribution 
¡ We can use a Markov chain to generate quadrature points 

according to this distribution 
¡ Example 

•  Method 1: let 
•  then  

0.5 0.5 22 2
2 0.5 0.5

0.5 0.5

0.5 0.5

( ) ( , )

( , )
V

V

r sdx dy x y s x y
r

sdx dys x y

+ +

− −
+ +

− −

+
= =∫ ∫

∫ ∫

1     inside R

0   outside R
s =

⎧
⎨
⎩

1 1( , ) ( , ) /x y s x y qπ =
V 

q = normalization constant 

2

1 1 1 1

1
11 1

2 2
1 1

2 2

1 1

r s

s

q r q r
r r

q q

π π π π
πππ π

= = = =
Simply sum r2 with points 
given by Metropolis sampling 
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Markov Chains and Importance Sampling 2. 
¡ Example (cont’d) 

•  Method 2: let 
•  then 

¡ Algorithm and transition probabilities 
•  given a point in the region R 
•  generate a new point in the vicinity of 

given point 
xnew = x + r(-1,+1)dx   ynew = y + r(-1,+1)dy 

•  accept with probability 
•  note 

•  Method 1: accept all moves that stay in R 
•  Method 2: if in R, accept with probability   

2
2 2( , ) /x y r s qπ =

2

2 2 2

2 2 2 22

22 2
2 2 2

2 2

1
/ 1/

r s

s

q qr
q r q r r

π π π

π π π ππ

−= = = =

min(1, / )new oldπ π

1 1

1 1

/
/

new new new

old old old
s q s
s q s

π
π

= =
Normalization constants cancel! 

( ) ( )2 2new old
r r
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¡ Subtle but important point 
•  Underlying matrix Τ is set by the trial-move 

algorithm (select new point uniformly in 
vicinity of present point) 

•  It is important that new points are selected 
in a volume that is independent of the 
present position 

•  If we reject configurations outside R, 
without taking the original point as the 
“new” one, then the underlying matrix 
becomes asymmetric  

Markov Chains and Importance Sampling 3. 

Different-sized 
trial sampling 
regions 
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Evaluating Areas with Metropolis Sampling 

¡ What if we want the absolute area 
of the region R, not an average over 
it? 

•  Let 
•  then 

•  We need to know the normalization 
constant q1 

•  but this is exactly the integral that we 
are trying to solve! 

¡ Absolute integrals difficult by MC 
•  relates to free-energy evaluation 

0.5 0.5

0.5 0.5
( , ) VA dx dys x y s

+ +

− −
= =∫ ∫
1 1( , ) ( , ) /x y s x y qπ =

11 1
1 1

sA q qππ π
= = =
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Summary 
¡ Markov process is a stochastic process with no memory 
¡ Full specification of process is given by a matrix of 

transition probabilities Π 
¡ A distribution of states are generated by repeatedly stepping 

from one state to another according to Π 
¡   A desired limiting distribution can be used to construct 

transition probabilities using detailed balance 
•  Many different  Π matrices can be constructed to satisfy detailed 

balance 
•  Metropolis algorithm is one such choice, widely used in MC 

simulation 
¡ Markov Monte Carlo is good for evaluating averages, but not 

absolute integrals 
¡ Next up:  Monte Carlo simulation 


