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Monte Carlo Integration: Review

O Stochastic evaluation of integrals
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* sum integrand evaluated at randomly generated points

* most appropriate for high-dimensional integrals
error vanishes more quickly (1/n'/?) e\
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better suited for complex-shaped domains of integration

-0.41

O Monte Carlo simulation T B R M

* Monte Carlo integration for ensemble averages
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* emphasizes sampling in domain where integrand is largest +

(U)=L[ar" Uy

O Importance Sampling

* it is easy to generate points according to a simple distribution
* stat mech 1 distributions are too complex for direct sampling

* need an approach to generate random multidimensional points

according to a complex probability distribution

* then integral is given by 1= <§>7r




Markov Processes

O Stochastic process

* movement through a series of well-defined states in a way that
involves some element of randomness

* for our purposes, “states”’ are microstates in the governing
ensemble

O Markov process

* Stochastic process that has no memory

* selection of next state depends only on current state, and not on
prior states

* process is fully defined by a set of transition probabilities T,
T; = probability of selecting state j next, given that presently in state i.

Transition-probability matrix IT collects all m;




Transition-Probability Matrix

If in state 1, will stay in state 1
O Example with probability 0.1
° System with three states Ifin state 1, will move to state 3
T/ with probability 0.4
Ty Ty T3 0.1 0.5 |04
IT= o1 Typ 73 |= 0.9 0.1 [0. Never go to state 3 from state 2

31 T3 733 03 03 04

O Requirements of transition-probability matrix
* all probabilities non-negative, and no greater than unity
* sum of each row is unity

 probability of staying in present state may be non-zero




Distribution of State Occupancies

O Consider process of repeatedly moving from one state to the
next, choosing each subsequent state according to I1

© [22322]3332323333>]>2>33—>elc
O Histogram the occupancy number for each state

- n, =3 7, = 0.33

* n;=4 m,=0.25 1 12 [3

O After very many steps, a limiting distribution emerges

O for an applet that demonstrates a Markov process
and 1ts approach to a limiting distribution




The Limiting Distribution 1.

O Consider the product of IT with itself

Ty Ty 73 Ty Ty 73

2 _ :
I1° = Tr1 Ty T3 [X| a1 Ty o3 All ways of going from state
1 to state 2 in two steps

Tt31 73y 733 Tt31 73p 733

T\ T 77y + 37031 |77 + 77Ty, + 737035 | elc.

=| Ty T xpTp ) T 793731 717 p T Tpp7yy + p3l3,  €lc.

310 1 T 3071 T 337031 |[TT3170 T 307y + 33703, | elc.

Probability of going from
\_ state 3 to state 2 in two steps

O In general I1" is the n-step transition probability matrix
* probabilities of going from state 1 to ] in exactly n steps
my oy oy
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The Limiting Distribution 2.

O Define 721-(0) as a unit state vector
72%=1 0 0) 2= 1 0) V=0 0 1)
O Then 7™ =7 11" is a vector of probabilities for ending at
cach state after n steps 1f beginning at state i
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O The limiting distribution corresponds to n — o

* independent of initial state =l =" =z




The Limiting Distribution 3.

O Stationary property of 7t

7= lim | 700"

n—>o0

=( i [ ]

=l

O 7 is a left eigenvector of I1 with unit eigenvalue

* such an eigenvector is guaranteed to exist for matrices with rows
that each sum to unity

O Equation for elements of limiting distribution &

N 7 =017, +0.97, + 0.37
a Z”J”ﬂ 01 05 04) | 1 2 3
J

72'2 = 057[1 + 017[2 + 037[3
eg. I1=/09 0.1 0.0

73 = 0.477, +0.07, + 0.471;3
03 03 0.4 /‘

7Z'1+7[2 +7Z'3 =7Z'1+7Z'2 +7Z'3

not independent




Detailed Balance

O Eigenvector equation for limiting distribution
® ﬂ-l' = 27[]”]1
O A sufficient (but not necessary) condition for solution is

* “detailed balance” or “microscopic reversibility”

O Thus
C =2 T 0.1 05 04 For a given I, it is not always
J m<loos o1 00 possible to satisfy detailed
— 2 0,7 03 03 04 balance; e.g. for this IT

TC37T3p # 703
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Der1ving Transition Probabilities

O Turn problem around...

O ...given a desired 7, what transition probabilities will yield

this as a limiting distribution?

O Construct transition probabilities to satisfy detailed balance

O Many choices are possible

0.97 0.02 0.01
© eg m=(025 05 025) oot 0os oqp | Leasteticien
0.01 0.02 0.97
0O 1 O 0.42 033 0.25 0.0 05 0.5
IT={05 0 0.5 II=|0.17 0.66 0.17 | II=[0.25 05 0.25
0O 1 O 0.25 0.33 042 0.5 05 0.0
Most efficient Barker

Metropolis
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Metropolis Algorithm 1.

O Prescribes transition probabilities to satisfy detailed balance,
given desired limiting distribution

O Recipe:
From a state i...
*with probability T, choose a trial state j for the move (note: 7; = 7;)
* If > m, accept | as the new state
* otherwise, accept state j with probability m/T,
generate a random number R on (0,1); accept if R </,

* if not accepting ] as the new state, take the present state as the next
one in the Markov chain (z; +0)

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller,
J. Chem. Phys., 21 1087 (1953)
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Metropolis Algorithm 2.

O What are the transition probabilities for this algorithm?
* Without loss of generality, define 1 as the state of greater probability

T T, >T;
Ty =T; X— i > 7
7 : N
in general: 7; =7; min| —,1
ﬂ’-ji :le' T
l
i =1-.7;
Jj#i

O Do they obey detailed balance?

?

O Yes, as long as the underlying matrix T of the Markov chain is
symmetric

* this can be violated, but acceptance probabilities must be modified
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Markov Chains and Importance Sampling 1.

O Importance sampling specifies the desired limiting distribution

O We can use a Markov chain to generate quadrature points
according to this distribution

0.4
1 1inside R |
O Example  _J1 inside |
0 outside R 0.2

<r2> _ J.—o 5 xJ_O S dy(x” +y7)s(x,y) <r S>V " .

. ‘ _ T
X s(x V 0.2
0.5 Mg B =

q = normalization constant

0.4° V
. Method]:letirl(x,y)=s(x,y)/ql/ ‘-

04 02 0 0.2 0.4

), e, el
2\ 4 T gl T 7 mo_[.2\ Simply sum r?> with points
r)= - - =\r given by Metropolis sampling
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Markov Chains and Importance Sampling 2.

O Example (cont’d)
« Method 2: let  7,(x,y)=r"s/q,

e Rl e
T
<;2>7[2 <Q2/r >7;2 Q2<l/r >” <r >7;

2 2

O Algorithm and transition probabilities
* given a point in the region R

* generate a new point in the vicinity of
given point
X"V =x+r(-1,+1)dx y"™*V=y+r(-1,+1)dy

* accept with probability min(1,z"®" / z°) = R ~
_FP"? -q-‘-_
. note ﬂ_lnew ~ Snew/q1 - grew N
71'10 ld SOld / q SOld ¥~ Normalization constants cancel!

* Method I: accept all moves that stay in R
new old
* Method 2: if in R, accept with probability %) / (%)
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Markov Chains and Importance Sampling 3.

O Subtle but important point

* Underlying matrix T is set by the trial-move
algorithm (select new point uniformly in
vicinity of present point) f

 [tis important that new points are selected

in a volume that is independent of the  pjrens si-ea /5

present position trial sampling a
regions i

« If we reject configurations outside R, %

without taking the original point as the .-_/\
“new” one, then the underlying matrix

becomes asymmetric - R C_‘:
4 N
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Evaluating Areas with Metropolis Sampling

O What if we want the absolute area
of the region R, not an average over

1t? 10.5  (+05
A= de. dys(x,y) = <>

o Let m(x,y)=s(x,)/q
* then e\ B
A—<ﬂ—1>ﬁ1 =(d1),, =0

We need to know the normalization
constant ¢,

* but this is exactly the integral that we
are trying to solve!

O Absolute integrals difficult by MC

* relates to free-energy evaluation
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Summary

O Markov process is a stochastic process with no memory

O Full specification of process is given by a matrix of
transition probabilities I1

O A distribution of states are generated by repeatedly stepping
from one state to another according to I1

O A desired limiting distribution can be used to construct
transition probabilities using detailed balance

* Many different 11 matrices can be constructed to satisfy detailed
balance

* Metropolis algorithm is one such choice, widely used in MC
simulation

O Markov Monte Carlo 1s good for evaluating averages, but not
absolute integrals

O Next up: Monte Carlo simulation




