CE 530 Molecular Simulation

1

Lecture 8 Markov Processes

David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu

Monte Carlo Integration: Review

- O Stochastic evaluation of integrals
 - sum integrand evaluated at randomly generated points
 - most appropriate for high-dimensional integrals error vanishes more quickly (1/n^{1/2}) better suited for complex-shaped domains of integration

O Monte Carlo simulation

Monte Carlo integration for ensemble averages

$$\langle U \rangle = \frac{1}{N!} \int dr^N U(r^N) \frac{e^{-\beta U(r^N)}}{Z_N}$$

O Importance Sampling

- *emphasizes sampling in domain where integrand is largest*
- *it is easy to generate points according to a simple distribution*
- stat mech π distributions are too complex for direct sampling
- need an approach to generate random multidimensional points according to a complex probability distribution
- then integral is given by $I \approx \left\langle \frac{f}{\pi} \right\rangle$

0.4

0.2

-0.2

-0.4

Markov Processes

O Stochastic process

- movement through a series of well-defined states in a way that involves some element of randomness
- for our purposes, "states" are microstates in the governing ensemble

O Markov process

- stochastic process that has no memory
- selection of next state depends only on current state, and not on prior states
- process is fully defined by a set of <u>transition probabilities</u> π_{ij} π_{ij} = probability of selecting state *j* next, given that presently in state *i*. Transition-probability matrix Π collects all π_{ii}

Transition-Probability Matrix

O Requirements of transition-probability matrix

- all probabilities non-negative, and no greater than unity
- *sum of each row is unity*
- probability of staying in present state may be non-zero

Distribution of State Occupancies

O Consider process of repeatedly moving from one state to the next, choosing each subsequent state according to Π

• $1 \rightarrow 2 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow etc.$

O Histogram the occupancy number for each state

•
$$n_1 = 3$$

• $n_2 = 5$
• $n_3 = 4$

 $\pi_1 = 0.33$
 $\pi_2 = 0.42$
 $\pi_3 = 0.25$

1 2 3

O After very many steps, a limiting distribution emerges
 O <u>Click here</u> for an applet that demonstrates a Markov process and its approach to a limiting distribution

The Limiting Distribution 1.

O Consider the product of Π with itself

O In general Π^n is the n-step transition probability matrix

• probabilities of going from state i to j in exactly n steps

$$\Pi^{n} \equiv \begin{pmatrix} \pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\ \pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\ \pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)} \end{pmatrix} \text{ defines } \pi_{ij}^{(n)}$$

The Limiting Distribution 2.

7

O Define $\pi_i^{(0)}$ as a unit state vector $\pi_1^{(0)} = (1 \ 0 \ 0) \ \pi_2^{(0)} = (0 \ 1 \ 0) \ \pi_3^{(0)} = (0 \ 0 \ 1)$ O Then $\pi_i^{(n)} \equiv \pi_i^{(0)} \Pi^n$ is a vector of probabilities for ending at each state after *n* steps if beginning at state *i* $\pi_1^{(n)} = \pi_1^{(0)} \Pi^n \equiv (1 \ 0 \ 0) \begin{pmatrix} \pi_{11}^{(n)} \ \pi_{12}^{(n)} \ \pi_{13}^{(n)} \\ \pi_{21}^{(n)} \ \pi_{22}^{(n)} \ \pi_{23}^{(n)} \\ \pi_{31}^{(n)} \ \pi_{32}^{(n)} \ \pi_{33}^{(n)} \end{pmatrix} = (\pi_{11}^{(n)} \ \pi_{12}^{(n)} \ \pi_{13}^{(n)})$

O The limiting distribution corresponds to $n \rightarrow \infty$

• independent of initial state $\pi_1^{(\infty)} = \pi_2^{(\infty)} = \pi_3^{(\infty)} \equiv \pi$

The Limiting Distribution 3.

O Stationary property of π

$$\pi = \lim_{n \to \infty} \left[\pi_i^{(0)} \Pi^n \right]$$
$$= \left(\lim_{n \to \infty} \left[\pi_i^{(0)} \Pi^{n-1} \right] \right) \Pi$$
$$= \pi \Pi$$

$\circ \pi$ is a left eigenvector of Π with unit eigenvalue

• such an eigenvector is guaranteed to exist for matrices with rows that each sum to unity

O Equation for elements of limiting distribution π

$$\pi_{i} = \sum_{j} \pi_{j} \pi_{ji}$$

$$e.g. \ \Pi = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.9 & 0.1 & 0.0 \\ 0.3 & 0.3 & 0.4 \end{pmatrix} / \begin{array}{c} \pi_{1} = 0.1\pi_{1} + 0.9\pi_{2} + 0.3\pi_{3} \\ \pi_{2} = 0.5\pi_{1} + 0.1\pi_{2} + 0.3\pi_{3} \\ \pi_{3} = 0.4\pi_{1} + 0.0\pi_{2} + 0.4\pi_{3} \\ \pi_{1} + \pi_{2} + \pi_{3} = \pi_{1} + \pi_{2} + \pi_{3} \\ not independent \\ \end{array}$$

Detailed Balance

O Eigenvector equation for limiting distribution

•
$$\pi_i = \sum_i \pi_j \pi_{ji}$$

O A sufficient (but not necessary) condition for solution is

- $\pi_i \pi_{ij} = \pi_j \pi_{ji}$
- "detailed balance" or "microscopic reversibility"

O Thus

•
$$\pi_i = \sum_j \pi_j \pi_{ji}$$

 $= \sum_j \pi_i \pi_{ij}$
 $= \pi_i \sum_j \pi_{ij} = \pi_i$

For a given Π , it is not always possible to satisfy detailed balance; e.g. for this Π
 $\pi_3 \pi_{32} \neq \pi_2 \pi_{23}$
Zero

Deriving Transition Probabilities

O Turn problem around...

O ... given a desired π , what transition probabilities will yield this as a limiting distribution?

O *Construct transition probabilities* to satisfy detailed balance
O Many choices are possible

• e.g.
$$\pi = (0.25 \ 0.5 \ 0.25)$$

• try them out
 $\Pi = \begin{pmatrix} 0.97 & 0.02 & 0.01 \\ 0.01 & 0.98 & 0.01 \\ 0.01 & 0.02 & 0.97 \end{pmatrix}$ Least efficient

$$\Pi = \begin{pmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Pi = \begin{pmatrix} 0.42 & 0.33 & 0.25 \\ 0.17 & 0.66 & 0.17 \\ 0.25 & 0.33 & 0.42 \end{pmatrix} \qquad \Pi = \begin{pmatrix} 0.0 & 0.5 & 0.5 \\ 0.25 & 0.5 & 0.25 \\ 0.5 & 0.5 & 0.0 \end{pmatrix}$$

$$Most efficient \qquad Barker \qquad Metropolis$$

Metropolis Algorithm 1.

O Prescribes transition probabilities to satisfy detailed balance, given desired limiting distribution

O Recipe:

From a state *i*...

- with probability τ_{ij} , choose a trial state *j* for the move (note: $\tau_{ij} = \tau_{ji}$)
- If $\pi_j > \pi_i$, accept j as the new state
- otherwise, accept state j with probability π_j/π_i generate a random number R on (0,1); accept if R < π_j/π_i
- *if not accepting* j *as the new state, take the present state as the next one in the Markov chain* $(\pi_{ii} \neq 0)$

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, J. Chem. Phys., **21** 1087 (1953)

11

Metropolis Algorithm 2.

O What are the transition probabilities for this algorithm?

• Without loss of generality, define i as the state of greater probability

12

 $\pi_i > \pi_i$

 $\pi_{ij} = \tau_{ij} \times \frac{\pi_j}{\pi_i}$ (in general: $\pi_{ij} = \tau_{ij} \min\left(\frac{\pi_j}{\pi_i}, 1\right)$) $\pi_{ii} = 1 - \sum_{j \neq i} \pi_{ij}$

O Do they obey detailed balance?

$$\pi_{i}\pi_{ij} = \pi_{j}\pi_{ji}$$
$$\pi_{i}\tau_{ij} \frac{\pi_{j}}{\pi_{i}} = \pi_{j}\tau_{ji}$$
$$\tau_{ij} = \tau_{ji}$$

0

O Yes, as long as the *underlying matrix* T of the Markov chain is symmetric

• this can be violated, but acceptance probabilities must be modified

Markov Chains and Importance Sampling 1.

O Importance sampling specifies the desired limiting distribution O We can use a Markov chain to generate quadrature points according to this distribution $s = \begin{cases} 1 & \text{inside R} \\ 0 & \text{outside R} \end{cases}$ O Example $\left\langle r^{2} \right\rangle = \frac{\int_{-0.5}^{+0.5} dx \int_{-0.5}^{+0.5} dy (x^{2} + y^{2}) s(x, y)}{\int_{-0.5}^{+0.5} dx \int_{-0.5}^{+0.5} dy s(x, y)} = \frac{\left\langle r^{2} s \right\rangle_{V}}{\left\langle s \right\rangle_{V}}$ -0.2 q = normalization constant-0.4 <u>Method 1:</u> let $\pi_1(x, y) = s(x, y)/q_1$ -0.4 -0,2 Ó. 0.2 Π'4 $\frac{then}{\langle r^2 \rangle} = \frac{\left\langle \frac{r^2 s}{\pi_1} \right\rangle_{\pi_1}}{\left\langle \frac{s}{\pi_1} \right\rangle} = \frac{\left\langle q_1 r^2 \right\rangle_{\pi_1}}{\langle q_1 \rangle_{\pi_1}} = \frac{q_1 \langle r^2 \rangle_{\pi_1}}{q_1} = \left\langle r^2 \right\rangle_{\pi_1} - Simply sum r^2 with points given by Metropolis sampling$

Markov Chains and Importance Sampling 2.

O Example (cont'd)

- <u>Method 2</u>: let $\pi_2(x, y) = r^2 s / q_2$
- then $\left\langle r^{2} \right\rangle = \frac{\left\langle \frac{r^{2}s}{\pi_{2}} \right\rangle_{\pi_{2}}}{\left\langle \frac{s}{\pi_{2}} \right\rangle_{\pi_{2}}} = \frac{\left\langle q_{2} \right\rangle_{\pi_{2}}}{\left\langle q_{2} / r^{2} \right\rangle_{\pi_{2}}} = \frac{q_{2}}{q_{2} \left\langle 1 / r^{2} \right\rangle_{\pi_{2}}} = \frac{1}{\left\langle r^{-2} \right\rangle_{\pi_{2}}}$

O Algorithm and transition probabilities

- given a point in the region R
- generate a new point in the vicinity of given point

 $x^{new} = x + r(-1,+1)dx$ $y^{new} = y + r(-1,+1)dy^{2}$

- accept with probability $\min(1, \pi^{new} / \pi^{old})$
- note $\frac{\pi_1^{new}}{\pi_1^{old}} = \frac{s^{new}/q_1}{s^{old}/q_1} = \frac{s^{new}}{s^{old}}$ Normalization constants cancel!
- Method 1: accept all moves that stay in R
- Method 2: if in R, accept with probability $(r^2)^{new}/(r^2)^{old}$

14

R

Markov Chains and Importance Sampling 3.

O Subtle but important point

- Underlying matrix T is set by the trial-move algorithm (select new point uniformly in vicinity of present point)
- It is important that new points are selected in a volume that is independent of the present position
- If we reject configurations outside R, without taking the original point as the "new" one, then the underlying matrix becomes asymmetric

15

Evaluating Areas with Metropolis Sampling

O What if we want the absolute area of the region R, not an average over it? $A = \int_{-0.5}^{+0.5} dx \int_{-0.5}^{+0.5} dy s(x, y) = \langle s \rangle_{V}$

• Let
$$\pi_1(x, y) = s(x, y)/q_1$$

- then $A = \left\langle \frac{s}{\pi_1} \right\rangle_{\pi_1} = \left\langle q_1 \right\rangle_{\pi_1} = q_1$
- We need to know the normalization constant q₁
- but this is exactly the integral that we are trying to solve!
- O Absolute integrals difficult by MC
 - relates to free-energy evaluation

Summary

- O Markov process is a stochastic process with no memory
- O Full specification of process is given by a matrix of transition probabilities Π
- O A distribution of states are generated by repeatedly stepping from one state to another according to Π
- A desired limiting distribution can be used to construct transition probabilities using detailed balance
 - *Many different* Π *matrices can be constructed to satisfy detailed balance*
 - *Metropolis algorithm is one such choice, widely used in MC simulation*
- O Markov Monte Carlo is good for evaluating averages, but not absolute integrals
- O Next up: Monte Carlo simulation