CE 530 Molecular Simulation

Lecture 8
Markov Processes

David A. Kofke
Department of Chemical Engineering
SUNY Buffalo
kofke@eng.buffalo.edu

Monte Carlo Integration: Review

O Stochastic evaluation of integrals

- sum integrand evaluated at randomly generated points
- most appropriate for high-dimensional integrals error vanishes more quickly ($1 / \mathrm{n}^{1 / 2}$)
better suited for complex-shaped domains of integration
○ Monte Carlo simulation

- Monte Carlo integration for ensemble averages

$$
\langle U\rangle=\frac{1}{N!} \int d r^{N} U\left(r^{N}\right) \frac{e^{-\beta U\left(r^{N}\right)}}{Z_{N}}
$$

O Importance Sampling

- emphasizes sampling in domain where integrand is largest
- it is easy to generate points according to a simple distribution
- stat mech π distributions are too complex for direct sampling
- need an approach to generate random multidimensional points according to a complex probability distribution
- then integral is given by $I \approx\left\langle\frac{f}{\pi}\right\rangle_{\pi}$

Markov Processes

O Stochastic process

- movement through a series of well-defined states in a way that involves some element of randomness
- for our purposes, "states" are microstates in the governing ensemble

O Markov process

- stochastic process that has no memory
- selection of next state depends only on current state, and not on prior states
- process is fully defined by a set of transition probabilities $\pi_{i j}$
$\pi_{\mathrm{ij}}=$ probability of selecting state j next, given that presently in state i.
Transition-probability matrix Π collects all π_{ij}

Transition-Probability Matrix

O Example

```
If in state 1, will stay in state 1
with probability 0.1
```

- system with three states

$$
\Pi \equiv\left(\begin{array}{lll}
\pi_{11} & \pi_{12} & \pi_{13} \\
\pi_{21} & \pi_{22} & \pi_{23} \\
\pi_{31} & \pi_{32} & \pi_{33}
\end{array}\right)=\left(\begin{array}{lll}
0.1 & 0.5 & 0.4 \\
0.9 & 0.1 & 0.0 \\
0.3 & 0.3 & 0.4
\end{array}\right) \quad \text { Never go to state } 3 \text { from state 2 }
$$

○ Requirements of transition-probability matrix

- all probabilities non-negative, and no greater than unity
- sum of each row is unity
- probability of staying in present state may be non-zero

Distribution of State Occupancies

O Consider process of repeatedly moving from one state to the next, choosing each subsequent state according to Π

- $1 \rightarrow 2 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow e t c$.

O Histogram the occupancy number for each state
$\left.\begin{array}{l}- \\ -n_{1}=3 \\ -n_{2}=5 \\ - \\ n_{3}=4\end{array}\right\} \quad \begin{aligned} & \pi_{1}=0.33 \\ & \pi_{2}=0.42 \\ & \pi_{3}=0.25\end{aligned}$

O After very many steps, a limiting distribution emerges
O Click here for an applet that demonstrates a Markov process and its approach to a limiting distribution

The Limiting Distribution 1.

O Consider the product of Π with itself

$$
\begin{aligned}
\Pi^{2} & \equiv\left(\begin{array}{lll}
\pi_{11} & \pi_{12} & \pi_{13} \\
\pi_{21} & \pi_{22} & \pi_{23} \\
\pi_{31} & \pi_{32} & \pi_{33}
\end{array}\right) \times\left(\begin{array}{lll}
\pi_{11} & \pi_{12} & \pi_{13} \\
\pi_{21} & \pi_{22} & \pi_{23} \\
\pi_{31} & \pi_{32} & \pi_{33}
\end{array}\right) \quad \text { All ways of going from state } \\
& =\left(\begin{array}{llll}
\pi_{11} \pi_{11}+\pi_{12} \pi_{21}+\pi_{13} \pi_{31} & \pi_{11} \pi_{12}+\pi_{12} \pi_{22}+\pi_{13} \pi_{32} & \text { etc. } \\
\pi_{21} \pi_{11}+\pi_{22} \pi_{21}+\pi_{23} \pi_{31} & \pi_{21} \pi_{12}+\pi_{22} \pi_{22}+\pi_{23} \pi_{32} & \text { etc. } \\
\pi_{31} \pi_{11}+\pi_{32} \pi_{21}+\pi_{33} \pi_{31} & \pi_{31} \pi_{12}+\pi_{32} \pi_{22}+\pi_{33} \pi_{32} & \text { etc. }
\end{array}\right)
\end{aligned}
$$

O In general Π^{n} is the n -step transition probability matrix

- probabilities of going from state i to j in exactly n steps

$$
\Pi^{n} \equiv\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\
\pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\
\pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)}
\end{array}\right) \text { defines } \pi_{i j}^{(n)}
$$

The Limiting Distribution 2.

O Define $\pi_{i}^{(0)}$ as a unit state vector

$$
\pi_{1}^{(0)}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \pi_{2}^{(0)}=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \pi_{3}^{(0)}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

○ Then $\pi_{i}^{(n)} \equiv \pi_{i}^{(0)} \Pi^{n}$ is a vector of probabilities for ending at each state after n steps if beginning at state i

$$
\pi_{1}^{(n)}=\pi_{1}^{(0)} \Pi^{n} \equiv\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\
\pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\
\pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)}
\end{array}\right)=\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)}
\end{array}\right)
$$

○ The limiting distribution corresponds to $n \rightarrow \infty$

- independent of initial state $\pi_{1}^{(\infty)}=\pi_{2}^{(\infty)}=\pi_{3}^{(\infty)} \equiv \pi$

The Limiting Distribution 3.

O Stationary property of π

$$
\begin{aligned}
\pi & =\lim _{n \rightarrow \infty}\left[\pi_{i}^{(0)} \Pi^{n}\right] \\
& =\left(\lim _{n \rightarrow \infty}\left[\pi_{i}^{(0)} \Pi^{n-1}\right]\right) \Pi \\
& =\pi \Pi
\end{aligned}
$$

$\bigcirc \pi$ is a left eigenvector of Π with unit eigenvalue

- such an eigenvector is guaranteed to exist for matrices with rows that each sum to unity
O Equation for elements of limiting distribution π

$$
\left.\begin{array}{rl}
\pi_{i}=\sum_{j} \pi_{j} \pi_{j i} \\
\text { e.g. } \Pi= & \left(\begin{array}{lll}
0.1 & 0.5 & 0.4 \\
0.9 & 0.1 & 0.0 \\
0.3 & 0.3 & 0.4
\end{array}\right)
\end{array}\right) \begin{aligned}
& \pi_{1}=0.1 \pi_{1}+0.9 \pi_{2}+0.3 \pi_{3} \\
& \pi_{2}=0.5 \pi_{1}+0.1 \pi_{2}+0.3 \pi_{3} \\
& \pi_{3}=0.4 \pi_{1}+0.0 \pi_{2}+0.4 \pi_{3} \\
& \pi_{1}+\pi_{2}+\pi_{3}=\pi_{1}+\pi_{2}+\pi_{3}
\end{aligned}
$$

Detailed Balance

O Eigenvector equation for limiting distribution

- $\pi_{i}=\sum \pi_{j} \pi_{j i}$
\bigcirc A sufficient (but not necessary) condition for solution is
- $\pi_{i} \pi_{i j}=\pi_{j} \pi_{j i}$
- "detailed balance" or "microscopic reversibility"

○ Thus

$$
\begin{aligned}
\cdot \pi_{i} & =\sum_{j} \pi_{j} \pi_{j i} \\
& =\sum_{j} \pi_{i} \pi_{i j} \\
& =\pi_{i} \sum_{j} \pi_{i j}=\pi_{i}
\end{aligned}
$$

\(\Pi=\left(\begin{array}{lll}0.1 \& 0.5 \& 0.4

0.9 \& 0.1 \& 0.0

0.3 \& 0.3 \& 0.4\end{array}\right) \quad\)| For a given Π, it is not always |
| :--- |
| possible to satisfy detailed |
| balance; e.g. for this Π |
| $\pi_{3} \pi_{32} \neq \pi_{2} \pi_{23}$ |$z_{\text {zero }}$

Deriving Transition Probabilities

O Turn problem around......given a desired π, what transition probabilities will yield this as a limiting distribution?Construct transition probabilities to satisfy detailed balance
O Many choices are possible

- egg. $\pi=\left(\begin{array}{lll}0.25 & 0.5 & 0.25\end{array}\right)$

$$
\Pi=\left(\begin{array}{lll}
0.97 & 0.02 & 0.01 \\
0.01 & 0.98 & 0.01 \\
0.01 & 0.02 & 0.97
\end{array}\right) \text { Least efficient }
$$

Metropolis Algorithm 1.

O Prescribes transition probabilities to satisfy detailed balance, given desired limiting distributionRecipe:
From a state $i \ldots$

- with probability $\tau_{i j}$, choose a trial state j for the move (note: $\tau_{i j}=\tau_{j i}$)
- If $\pi_{j}>\pi_{i}$, accept j as the new state
- otherwise, accept state j with probability π_{j} / π_{i}
generate a random number R on $(0,1)$; accept if $\mathrm{R}<\pi_{\mathrm{j}} / \pi_{\mathrm{i}}$
- if not accepting j as the new state, take the present state as the next one in the Markov chain $\left(\pi_{i i} \neq 0\right)$

Metropolis Algorithm 2.

O What are the transition probabilities for this algorithm?

- Without loss of generality, define i as the state of greater probability

$$
\begin{aligned}
& \pi_{i j}=\tau_{i j} \times \frac{\pi_{j}}{\pi_{i}} \\
& \pi_{j i}=\tau_{j i} \\
& \pi_{i i}=1-\sum_{j \neq i} \pi_{i j}
\end{aligned} \quad\left(\text { in general: } \pi_{i j}=\tau_{i j} \min \left(\frac{\pi_{j}}{\pi_{i}}, 1\right)\right)
$$

$$
\pi_{i}>\pi_{j}
$$

O Do they obey detailed balance?

$$
\begin{aligned}
& \pi_{i} \pi_{i j}=\pi_{j} \pi_{j i} \\
& \pi_{i} \tau_{i j} \frac{\pi_{j}}{\pi_{i}}=\pi_{j} \tau_{j i} \\
& \tau_{i j}=\tau_{j i}
\end{aligned}
$$

○ Yes, as long as the underlying matrix T of the Markov chain is symmetric

- this can be violated, but acceptance probabilities must be modified

Markov Chains and Importance Sampling 1.

Importance sampling specifies the desired limiting distributionWe can use a Markov chain to generate quadrature points according to this distributionO Example

$$
s=\left\{\begin{array}{lc}
1 & \text { inside R } \\
0 & \text { outside } \mathrm{R}
\end{array}\right.
$$

$$
\left\langle r^{2}\right\rangle=\frac{\int_{-0.5}^{+0.5} d x \int_{-0.5}^{+0.5} d y\left(x^{2}+y^{2}\right) s(x, y)}{\int_{-0.5}^{+0.5} d x \int_{-0.5}^{+0.5} d y s(x, y)}=\frac{\left\langle r^{2} s\right\rangle_{V}}{\langle s\rangle_{V}}
$$

$$
q=\text { normalization constant }
$$

- Method 1: let $\pi_{1}(x, y)=s(x, y) / q_{1}{ }^{\circ}$

$\begin{aligned} & \left.\text { - then }\left\langle r^{2}\right\rangle=\frac{r^{2} s}{\pi_{1}}\right\rangle_{\pi_{1}} \\ & \left\langle\frac{s}{\pi_{1}}\right\rangle_{\pi_{1}}\end{aligned}=\frac{\left\langle q_{1} r^{2}\right\rangle_{\pi_{1}}}{\left\langle q_{1}\right\rangle_{\pi_{1}}}=\frac{q_{1}\left\langle r^{2}\right\rangle_{\pi_{1}}}{q_{1}}=\left\langle r^{2}\right\rangle_{\pi_{1}}$ - $\begin{aligned} & \text { Simply sum } r^{2} \text { with points } \\ & \text { given by Metropolis sampling }\end{aligned}$

Markov Chains and Importance Sampling 2.

O Example (cont'd)

- Method 2: let $\pi_{2}(x, y)=r^{2} s / q_{2}$
- then $\left\langle r^{2}\right\rangle=\frac{\left\langle\frac{r^{2} s}{\pi_{2}}\right\rangle_{\pi_{2}}}{\left\langle\frac{s}{\pi_{2}}\right\rangle_{\pi_{2}}}=\frac{\left\langle q_{2}\right\rangle_{\pi_{2}}}{\left\langle q_{2} / r^{2}\right\rangle_{\pi_{2}}}=\frac{q_{2}}{q_{2}\left\langle 1 / r^{2}\right\rangle_{\pi_{2}}}=\frac{1}{\left\langle r^{-2}\right\rangle_{\pi_{2}}}$

O Algorithm and transition probabilities

- given a point in the region R
- generate a new point in the vicinity of given point

$$
x^{\text {new }}=x+r(-1,+1) d x \quad y^{\text {new }}=y+r(-1,+1) d y
$$

- accept with probability $\min \left(1, \pi^{\text {new }} / \pi^{\text {old }}\right)$
- note $\frac{\pi_{1}^{\text {new }}}{\pi_{1}^{\text {old }}}=\frac{s^{\text {new }} / q_{1}}{s^{\text {old }} / q_{1}}=\frac{s^{\text {new }}}{s^{\text {old }}}$,
Normalization constants cancel!
- Method 1: accept all moves that stay in R
- Method 2: if in R, accept with probability $\left(r^{2}\right)^{\text {new }} /\left(r^{2}\right)^{\text {old }}$

Markov Chains and Importance Sampling 3.

O Subtle but important point

- Underlying matrix T is set by the trial-move algorithm (select new point uniformly in vicinity of present point)
- It is important that new points are selected in a volume that is independent of the present position
- If we reject configurations outside R , without taking the original point as the "new" one, then the underlying matrix becomes asymmetric

$\stackrel{4}{=}=$
 trial sampling regions

Evaluating Areas with Metropolis Sampling

O What if we want the absolute area
of the region R , not an average over
it?

$$
A=\int_{-0.5}^{+0.5} d x \int_{-0.5}^{+0.5} d y s(x, y)=\langle s\rangle_{V}
$$

- Let $\pi_{1}(x, y)=s(x, y) / q_{1}$
- then

$$
A=\left\langle\frac{s}{\pi_{1}}\right\rangle_{\pi_{1}}=\left\langle q_{1}\right\rangle_{\pi_{1}}=q_{1}
$$

- We need to know the normalization constant q_{1}
- but this is exactly the integral that we
 are trying to solve!
O Absolute integrals difficult by MC
- relates to free-energy evaluation

Summary

O Markov process is a stochastic process with no memory
O Full specification of process is given by a matrix of transition probabilities Π
O A distribution of states are generated by repeatedly stepping from one state to another according to Π
O A desired limiting distribution can be used to construct transition probabilities using detailed balance

- Many different Π matrices can be constructed to satisfy detailed balance
- Metropolis algorithm is one such choice, widely used in MC simulation
O Markov Monte Carlo is good for evaluating averages, but not absolute integrals
O Next up: Monte Carlo simulation

