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Statistical Mechanics 

¡ Theoretical basis for derivation of macroscopic behaviors from 
microscopic origins 

¡ Two fundamental postulates of equilibrium statistical mechanics 
•  microstates of equal energy are equally likely 
•  time average is equivalent to ensemble average 

¡ Formalism extends postulates to more useful situations 
•  thermal, mechanical, and/or chemical equilibrium with reservoirs 

systems at constant T, P, and/or m  

•  yields new formulas for probabilities of microstates 
derivation invokes thermodynamic limit of very large system 

¡ Macroscopic observables given as a weighted sum over 
microstates 
•  dynamic properties require additional formalism 
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Ensembles 
¡ Definition of an ensemble 

•  Collection of microstates subject to at least one extensive constraint 
“microstate” is specification of all atom positions and momenta 
fixed total energy, total volume, and/or total number of molecules 
unconstrained extensive quantities are represented by full range of possible values 

•  Probability distribution π  describing the likelihood of observing each 
state, or the weight that each state has in ensemble average 

¡ Example:  Some members of ensemble of fixed N 
•  isothermal-isobaric (TPN) 

all energies and volumes represented 

Low-probability state 
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Commonly Encountered Ensembles 

Name All states of: Probability distribution Schematic

Microcanonical
(EVN)

given EVN 1
iπ Ω=

Canonical
(TVN)

all energies 1( ) iE
i QE e βπ −=

Isothermal-isobaric
(TPN)

all energies and
volumes

( )1( , ) i iE PV
i iE V e βπ − +

Δ=

Grand-canonical
(TVµ)

all energies and
molecule numbers

( )1( , ) i iE N
i iE N e β µπ − +

Ξ=

Note: 1/ kTβ ≡
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Partition Functions 
¡ The normalization constants of the probability distributions are 

physically significant 
•  known as the partition function 
•  relates to a corresponding free energy, or thermodynamic potential, 

via a bridge equation 

Ensemble Thermodynamic 
Potential 

Partition Function Bridge Equation 

Microcanonical 
 

Entropy, S 1Ω =∑  / ln ( , , )S k E V N= Ω  

Canonical 
 

Helmholtz, A iEQ e β−=∑  ln ( , , )A Q T V Nβ− =  

Isothermal-isobaric 
 

Gibbs, G ( )i iE PVe β− +Δ =∑  ln ( , , )G T P Nβ− = Δ  

Grand-canonical 
 

Hill, L = –PV 
  Ξ = e−β ( Ei−µNi )∑  ln ( , , )PV T Vβ µ= Ξ  
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Ensemble and Time Averaging 
¡ Configuration given by all positions and momenta  

•  “phase space” 
¡ Configuration variable A(rN,pN) 
¡ Ensemble average 

•  Weighted sum over all members of ensemble 
•  In general 
•  For example, canonical ensemble, classical mechanics: 

¡ Time average 
•  Sum over all states encountered in dynamical trajectory of system 

i iA Aπ=∑

3
( , )1 1

!
( , )

N N

N
N N N N E p r

Q h N
A dp dr A p r e β−= ∫ ∫

( )
0

1lim ( ), ( ); (0), (0)
t

N N N N
t

A A p t r t p r dt
t→∞

′= ∫
Given by equations of motion 

rN shorthand for “positions of all N atoms” 

Should average 
over initial 
conditions 

pN ,rN( )∈Γ
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Ergodicity 

¡ If a time average does not give complete representation of 
full ensemble, system is non-ergodic 
•  Truly nonergodic: no way there from here 
•  Practically nonergodic: very hard to find route from here to there 

¡ Term applies to any algorithm that purports to generate a 
representative set of configurations from the ensemble 

¡ Click here for an applet describing ergodicity. 

Phase space 
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Separation of the Energy 

¡ Total energy is sum of kinetic and potential parts 
•  E(pN,rN) = K(pN) + U(rN) 

¡ Kinetic energy is quadratic in momenta 
•    

¡ Kinetic contribution can be treated analytically in partition 
function 

¡ And it drops out of position averages 

2( ) / 2N
i iiK p p m=∑

2

3

3

3

/ 2 ( )1
!

( )1 1
!

1

N
i

N

N

N

N

p mN N U r
h N

N U r
N

N

Q dp e dr e

dr e

Z

β β

β

− −

−
Λ

Λ

∑=

=

=

∫ ∫
∫

( )1 1
! ( )

N

N

N N U r
Z NA dr A r e β−= ∫

2
h
mkTπ

Λ =
thermal de Broglie wavelength 

configuration integral 
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Simple Averages 1. Energy 

¡ Average energy 

¡ Note thermodynamic connection 

¡ Average kinetic energy 

¡ Average potential energy 
( )1 1

! ( )
N

N

N N U r
Z NU dr U r e β−= ∫

3
( , )1 1

!
( , )

N N

N
N N N N E p r

Q h N
E dp dr E p r e β−= ∫ ∫

internal
ln ( / )

(1/ )
Q A kTE E

kTβ
∂ ∂= − = =
∂ ∂

definition of Q; calculus bridge equation Gibbs-Helmholtz equation 

2 2

3
/ 21

2

3
2

i i
N

p p mN
mh

K dp e

NkT

β− ∑=

=

∑∫
Equipartition of energy:  kT/2 for each degree of freedom 
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Simple Averages 2. Temperature 

¡ Need to measure temperature in microcanonical ensemble 
(NVE) simulations 

¡ Define instantaneous kinetic temperature 

¡ Thermodynamic temperature is then given as ensemble 
average 

¡ Relies on equipartition as developed in canonical ensemble 
¡ A better formulation has been developed recently 

21 /
3 iT p m
Nk

= ∑

T T=

More generally, divide by number of molecular 
degrees of freedom instead of 3N 
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Simple Averages 3a. Pressure 
¡ From thermodynamics and bridge equation 

¡ Volume appears in limits of integration 
•  Scale coordinates to move volume dependence into the potential 

•  L-derivative of U is related to force 

¡ Result 

( )1
!

,
ln

NN U r
N

T N

AP kT dr e
V V

β−∂ ∂⎛ ⎞ ⎡ ⎤= − =⎜ ⎟ ⎢ ⎥⎣ ⎦∂ ∂⎝ ⎠ ∫

   

sk ≡ rk / L
r ∈(0, L)
s ∈(0,1)

U (r1x ,r1y ,…,rNz ) = U (Ls1x , Ls1y ,…, LsNz ) =U ((Vs)N )

V = L3 

( ) ( ) 1( )
( )

N k
k k

k

s L UU sL r f
L L s L L
∂ ∂ ∂= = −
∂ ∂ ∂∑ ∑

L 1 
(( ) )

!ln
NN VV N U s

NP kT ds e
V

β−∂ ⎡ ⎤= ⎢ ⎥⎣ ⎦∂ ∫

   
P = NkT

V
+ 1

3V
!rij ⋅
!
fij

pairs i,j
∑
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Simple Averages 3b.  Hard-Sphere Pressure 

¡ Force is zero except at collision 
¡ Time integration of virial over instant of collision is finite 

•  contribution over instant of collision 

¡ Pressure is sum over collisions  

!r12 ⋅
!
f12dt =

!r12 ⋅ Δ
!p

=
2m1m2
m1 +m2

!v12 ⋅
!r12

P = NkT
V

+ 1
3V

1
tsim

mR
!v12 ⋅
!r12

collisions
∑
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Simple Averages 4. Heat Capacity 

¡ Example of a “2nd derivative” property 

¡ Expressible in terms of fluctuations of the energy 

¡ Other 2nd-derivative or “fluctuation” properties 
•  isothermal compressibility 

2
2

2
, ,

2

( )

1
( )

v
V N V N

N N E

E AC k
T

k dr dp Ee
Q

β

β
β

β
β β

β

−

⎛ ⎞∂ ∂⎛ ⎞= = − ⎜ ⎟⎜ ⎟∂⎝ ⎠ ∂⎝ ⎠
∂= −
∂ ∫

22 2
vC k E Eβ ⎡ ⎤= −⎣ ⎦

,

1
T

T N

V
V P

κ ∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠

Note:  difference between two O(N2) 
quantities to give a quantity of O(N) 
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(Not) Simple Averages 5. Free Energy 

¡ Free energy given as partition-function integral 

¡ Impossible to evaluate 
•  Even numerically! 
•  Click here for an applet demonstrating the difficulty 

¡ Free energy involves properties of entire ensemble 
•  No value associated with a single member of ensemble 
•  For example, the size of (number of members in) the ensemble 

¡ The trick is to settle for computing free-energy differences 
¡ Return to this topic later in course 

3
1
!N

A

N N E
h N

e Q

dp dr e

β

β

−

−

=

= ∫
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Fluctuations 
¡ How complete is the mean as a statistic of ensemble behavior? 

•  Are there many members of the ensemble that have properties that 
deviate substantially from the mean? 

•  Look at the standard deviation σ 

•  This relates to the heat capacity 

•  Relative to mean is the important measure 

¡ Fluctuations vanish in thermodynamic limit Nè∞ 
¡ Similar measures apply in other ensembles 

•  volume fluctuations in NPT; molecule-number fluctuations in µVT 
¡ Click here for an applet illustrating fluctuations 

p(E) 

E 

σE 

<E> 

( )
1/ 2 1/ 22 22

E E E E Eσ ⎡ ⎤= − = −⎣ ⎦

1/ 2( / )E VkT C kσ =

1/ 2 1/ 2
1/ 2( / ) ( ) ( )

( )
E VkT C k N N
E E N
σ −Ο= = = Ο

Ο


