CE 530 Molecular Simulation

1

Lecture 22 Chain-Molecule Sampling Techniques

> David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu

Monte Carlo Sampling

- O MC method permits great flexibility in developing improved sampling methods
- Biasing methods improve sampling without changing the limiting distribution
 - Modification of trial probabilities compensated by changes in acceptance and reverse-trial probabilities
- O Non-Boltzmann sampling methods modify the limiting distribution
 - Desired ensemble average obtained by taking a weighted average over the non-Boltzmann sample

$$\langle M \rangle_0 = \frac{\left\langle M e^{-\beta(U_0 - U_W)} \right\rangle_W}{\left\langle e^{-\beta(U_0 - U_W)} \right\rangle_W}$$

Simulating Chain Molecules

3

O Slow to explore different parts of phase spaceO Concerted moves needed to detangle chains

O Algorithms based solely on single-atom moves may be nonergodic

Modeling Chain Molecules

- O Detailed models use full array of potentials discussed previously
 - LJ atoms, with torsion, bend, stretch intramolecular potentials
- O Other models try to explain qualitative features of polymer behavior
 - *hard- or soft-sphere atoms, only stretch* bead-spring; tangent spheres; finitely-extensible nonlinear elastic (FENE)
 - each unit of model might represent a multi-unit segment of the true polymer
 - the only feasible approach for very long chains >10³ units

O Lattice models are very helpful

- *discretize space* various choices for lattice symmetry
- chain occupies contiguous sites on lattice
- one chain unit per site

Generating Configurations of Chains

O Open ensembles (grand-canonical) often preferred

- *insertion and removal of chains enhances sampling of configurations*
- O Insertions and removals are difficult!
- O We'll examine three approaches
 - Simple sampling
 - Configurational bias
 - Pruned-enriched sampling
- O Consider methods in the context of a simple hard-exclusion model (no attraction, no bending energy)
 - All non-overlapping chain configurations are weighted uniformly

Simple Sampling

6

O Molecules are inserted and deleted in an unbiased fashion

- Stepwise insertion: after j segments have been inserted, the (j +1)th segment is placed at random at one of the sites adjoining the last segment
- Any attempt that leads to an overlap with an existing segment causes the whole trial to be immediately discarded

Simple Sampling: Insertion Likelihood

• O What is the probability that this trial will occur using simple insertion?

• In-class assignment 1 figure it out

7

63 sites

Simple Sampling: Insertion Likelihood

• What is the probability that this trial will occur using simple insertion?

• O Insertion probability for first unit

63 sites

O Insert six more units, each with probability 1/3 going in the "right" spot

• 1/3⁶

• 1/63

O Could begin on either end of chain

• multiply by 2

O Total probability is product $\tau_{ij} = \frac{1}{63} \times \frac{1}{3^6} \times 2 = 0.000044$

$$=4.4 \times 10^{-5}$$

Configurational Bias Monte Carlo

9

- O Based on 1955 idea of Rosenbluth & Rosenbluth
- O Apply bias during growth of chain, so that overlaps do not lead to rejection of entire trial
- O Remove bias during acceptance of complete trial
 - Accumulate "Rosenbluth weight" during course of trial

Configurational-Bias Insertion/Deletion Trial. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	Forward-step trial probability $\frac{1}{2} \times \frac{1}{W} \times \min(1, \chi)$ Reverse-step trial probability $\frac{1}{2} \times \frac{1}{N+1} \times \min(1, \frac{1}{\chi})$ We'll work this out later
Select insertion trial [select deletion trial]	$\begin{bmatrix} 1/2\\ 1/2 \end{bmatrix}$	
Place molecule at { r } [delete molecule N+1]	1/W({ r }) [1/(N+1)]	
Accept move [accept move]	$\min(1,\chi)$ $[\min(1,1/\chi)]$	

Configurational-Bias Insertion/Deletion Trial. Analysis of Detailed Balance

Configurational-Bias Insertion/Deletion Trial. Analysis of Detailed Balance

Detailed balance

$$\pi_{i} \qquad \pi_{ij} = \pi_{j} \qquad \pi_{ji}$$

$$\frac{\partial U^{old} + \beta \mu N}{\mathbb{Z}a^{-N}} \left[\frac{1}{2} \times \frac{1}{W} \times \min(1, \chi)\right] = \frac{e^{-\beta U^{new} + \beta \mu (N+1)}}{\mathbb{Z}a^{-(N+1)}} \left[\frac{1}{2} \times \frac{1}{N+1} \times \min(1, \frac{1}{\chi})\right]$$

Energy is zero in both configurations

e

$$\frac{1}{W}\chi = \frac{q(T)}{N+1}e^{+\beta\mu}$$

 $\chi = \frac{q(1)}{N+1} W e^{+\beta\mu}$

Acceptance probability

Rosenbluth Weight

O What is W?

O 1/W is the probability that the chain would be inserted into the given position

• Each placement of a unit in the chain is selected with probability $\pi_j = \frac{1}{w}$

where w_i is the number of non-overlap "sibling" alternatives available at generation i of the overall insertion

• Probability of making this particular insertion is

 $\tau = \frac{1}{63} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{1} = 0.004$

 $W = 63 \times 1 \times 1 \times 1 \times 2 \times 2 \times 1 = 252$

14 **NVT Configuration Sampling** O CBMC is also used to generate new configurations of present molecules A B • Acceptance of any move is based on Rosenbluth weight for given move and the reverse move

- $W_A = 63$
- $W_B = 252$
- The move $A \rightarrow B$ is accepted with probability 1
- The move $B \rightarrow A$ is accepted with probability $\frac{63}{252} = \frac{1}{4}$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^k e^{-\beta u_i(j)}$ Before, this was a sum of terms either zero or one

• And probability of selecting site j is
$$\pi_j = \frac{e^{-\beta u_j}}{w_i}$$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^{k} e^{-\beta u_i(j)}$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^k e^{-\beta u_i(j)}$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^k e^{-\beta u_i(j)}$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^k e^{-\beta u_i(j)}$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^{k} e^{-\beta u_i(j)}$

• And probability of selecting site j is $\pi_j = \frac{e^{-\beta u_j}}{w_i}$

In-class assignment 2 Get the next term

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^k e^{-\beta u_i(j)}$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^{k} e^{-\beta u_i(j)}$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^k e^{-\beta u_i(j)}$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^k e^{-\beta u_i(j)}$

$$e^{-\beta u} = \begin{cases} 2 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \\ 2 &$$

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_i = \sum_{j=1}^{k} e^{-\beta u_i(j)}$
- And probability of selecting site j is $\pi_j = \frac{e^{-\beta u_j}}{w_i}$

O W is used just as before: accept with proby $min[1, W_{new}/W_{old}]$

• energy contribution is built-in: $\prod \tau_i = \prod \frac{e^{-\beta u_i}}{w_i} = \frac{e^{-\beta U}}{W}$

25

A General Result for Markov Processes 1.

O Consider a process in which there are several ways to generate each trial $i \rightarrow j$

• To enforce detailed balance, all routes should be considered in formulating acceptance probability

$$\pi_{i} \Big[\tau_{ij}^{(a)} + \tau_{ij}^{(b)} + \tau_{ij}^{(c)} \Big] \min[1, \chi] = \pi_{j} \Big[\tau_{ji}^{(a)} + \tau_{ji}^{(b)} + \tau_{ji}^{(c)} \Big] \min[1, 1/\chi]$$

O If there are many ways to generate the trial, this can pose difficulties

A General Result for Markov Processes 1.

O Consider the following recipe for a single-step trial

- Generate the trial $i \rightarrow j$ via route (a), with probability $\tau_{ij}^{(a)}$
- Choose a reverse trial j → i via one of the routes, say (b) Choose it with probability that it would occur as the j → i route Probability = τ_{ji}^(b)/τ_{ji}
- Accept the (forward) trial as if (a) and (b) were the only routes $\pi_i \tau_{ij}^{(a)} \min[1, \chi^{ab}] = \pi_j \tau_{ji}^{(b)} \min[1, 1/\chi^{ab}]$

O This recipe satisfies detailed balance for the overall transition $i \rightarrow j$

Off the Lattice

O CBMC can be extended to off-lattice models

O Choose a set of trial orientations at random for each atom insertion

- O Once a chain is generated in new position, perform same operation tracing out its original location —
- O Compile Rosenbluth weight for new and original chains to use in acceptance $W = \prod_{\text{atoms trials}} \sum_{\text{trials}} e^{-\beta u_i(j)}$
- Note that each insertion may be accomplished via multiple routes, differing in the discarded atom trials

28

CBMC General Comments

O Method begins to fail for sufficiently long chains

• maybe as few as 10 atoms

O Extensions of method

- Gibbs ensemble
- Branched polymers
- Partial chain regrowth
- Chemical-potential calculation
- O General idea can be applied in other ways
 - Multi-step trial broken into smaller decisions, with acceptance including consideration of the choices not taken

Parallel Tempering 2.

O Simulate loosely coupled high- and low-temperature systems in parallel

Low temperature

High temperature

31

O Perform moves in which two systems swap configurations

O Accept based on $e^{-\beta_H (U_2 - U_1)} e^{-\beta_L (U_1 - U_2)} = e^{-(\beta_H - \beta_L)(U_2 - U_1)} = e^{-\Delta\beta\Delta U}$

Parallel Tempering 3.

- To get reasonable acceptance rate, temperatures should not be too different
- Can be extended to include any number of systems simulated in parallel
- O Can be extended to do "tempering" in other variables, such as the chemical potential
- O Very well suited for use in conjunction with histogram reweighting

Pruned-Enriched Rosenbluth Method

- At some point along the growth process it may become clear that
 - the chain is doomed, or
 - the chain is really doing well
- We'd like to enrich the presence of the good ones, while pruning out the ones that look bad

O Use a criterion based on partial Rosenbluth weight

Pruned-Enriched Rosenbluth Method

O Set cutoffs for intermediate Rosenbluth weights

- duplicate any configuration having W > W[>], halving weights of new duplicates
- prune configurations having $W < W^{<}$, taking every-other such configuration, and doubling the weight of those not taken