CE 530 Molecular Simulation

Lecture 22
Chain-Molecule Sampling Techniques

David A. Kofke
Department of Chemical Engineering
SUNY Buffalo
kofke@eng.buffalo.edu

Monte Carlo Sampling

O MC method permits great flexibility in developing improved sampling methods
O Biasing methods improve sampling without changing the limiting distribution

- Modification of trial probabilities compensated by changes in acceptance and reverse-trial probabilities
O Non-Boltzmann sampling methods modify the limiting distribution
- Desired ensemble average obtained by taking a weighted average over the nonBoltzmann sample

$$
\langle M\rangle_{0}=\frac{\left\langle M e^{-\beta\left(U_{0}-U_{W}\right)}\right\rangle_{W}}{\left\langle e^{-\beta\left(U_{0}-U_{W}\right)}\right\rangle_{W}}
$$

Simulating Chain Molecules

O Slow to explore different parts of phase space
O Concerted moves needed to detangle chains

O Algorithms based solely on single-atom moves may be nonergodic

Modeling Chain Molecules

O Detailed models use full array of potentials discussed previously

- LJ atoms, with torsion, bend, stretch intramolecular potentials

O Other models try to explain qualitative features of polymer behavior

- hard- or soft-sphere atoms, only stretch
bead-spring; tangent spheres; finitely-extensible nonlinear elastic (FENE)
- each unit of model might represent a multi-unit segment of the true polymer
- the only feasible approach for very long chains $>10^{3}$ units
○ Lattice models are very helpful
- discretize space various choices for lattice symmetry

- chain occupies contiguous sites on lattice
- one chain unit per site

Generating Configurations of Chains

O Open ensembles (grand-canonical) often preferred

- insertion and removal of chains enhances sampling of configurations
O Insertions and removals are difficult!
O We'll examine three approaches
- Simple sampling
- Configurational bias
- Pruned-enriched sampling

O Consider methods in the context of a simple hard-exclusion model (no attraction, no bending energy)

- All non-overlapping chain configurations are weighted uniformly

Simple Sampling

O Molecules are inserted and deleted in an unbiased fashion

- Stepwise insertion: after j segments have been inserted, the (j $+1)$ th segment is placed at random at one of the sites adjoining the last segment
- Any attempt that leads to an overlap with an existing segment causes the whole trial to be immediately discarded

Simple Sampling: Insertion Likelihood

O What is the probability that this trial

will occur using simple insertion?

- In-class assignment 1
figure it out

Simple Sampling: Insertion Likelihood

O What is the probability that this trial
 will occur using simple insertion?
\qquad
O Insertion probability for first unit

- 1/63

63 sites
O Insert six more units, each with probability $1 / 3$ going in the "right" spot

- $1 / 3^{6}$

O Could begin on either end of chain

- multiply by 2

O Total probability is product $\tau_{i j}=\frac{1}{63} \times \frac{1}{3^{6}} \times 2=0.000044$ $=4.4 \times 10^{-5}$

Configurational Bias Monte Carlo

O Based on 1955 idea of Rosenbluth \& Rosenbluth
O Apply bias during growth of chain, so that overlaps do not lead to rejection of entire trial
O Remove bias during acceptance of complete trial

- Accumulate "Rosenbluth weight" during course of trial

Configurational-Bias Insertion/Deletion Trial. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	$\begin{aligned} & \text { Forward-step } \\ & \text { trial } \\ & \text { probability } \end{aligned} \quad \frac{1}{2} \times \frac{1}{W} \times \min (1, \chi)$
Select insertion trial [select deletion trial]	$\begin{gathered} 1 / 2 \\ {[1 / 2]} \end{gathered}$	
Place molecule at $\{\mathbf{r}\}$ [delete molecule $\mathrm{N}+1$]	$\begin{aligned} & 1 / \mathrm{W}(\{\mathbf{r}\}) \\ & {[1 /(\mathrm{N}+1)]} \end{aligned}$	$\begin{aligned} & \text { trial } \\ & \text { probability }\end{aligned} \quad \frac{1}{2} \times \frac{1}{N+1} \times \min \left(1, \frac{1}{\chi}\right)$
Accept move [accept move]	$\begin{gathered} \min (1, \chi) \\ {[\min (1,1 / \chi)]} \end{gathered}$	

Configurational-Bias Insertion/Deletion Trial. Analysis of Detailed Balance

Configurational-Bias Insertion/Deletion Trial. Analysis of Detailed Balance

```
Forward-step
lrial 
```

Reverse-step
trial
probability

Detailed balance

$$
\pi_{i} \quad \pi_{i j} \quad=\quad \pi_{j} \quad \pi_{j i}
$$

Rosenbluth Weight

O What is W?
O $1 / \mathrm{W}$ is the probability that the chain would be inserted into the given position

- Each placement of a unit in the chain is selected with probability

$$
\pi_{j}=\frac{1}{w_{i}}
$$

where w_{i} is the number of non-overlap "sibling" alternatives available at generation i of the overall insertion

- Probability of making this particular insertion is

$$
\begin{aligned}
& \tau=\frac{1}{63} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{1}=0.004 \\
& W=63 \times 1 \times 1 \times 1 \times 2 \times 2 \times 1=252
\end{aligned}
$$

NVT Configuration Sampling

O CBMC is also used to generate new configurations of present molecules

O Acceptance of any move is based on Rosenbluth weight for given move and the reverse move

- $W_{A}=63$
- $W_{B}=252$
- The move $A \rightarrow B$ is accepted with probability 1
- The move $B \rightarrow A$ is accepted with probability $63 / 252=1 / 4$

Attractive Interactions

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)} \quad \begin{aligned} & \text { Before, this was a sum of } \\ & \text { terms either zero or one }\end{aligned}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

Attractive InteractionsMolecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

Attractive Interactions

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\begin{aligned}
& e^{-\beta u}=\left\{\begin{array}{l}
2 \bigcirc \\
1 \\
2
\end{array}\right. \\
& \tau=\frac{4}{63} \times \frac{2 \times 1}{2+0+0} \\
& W=63 \times 2
\end{aligned}
$$

Attractive Interactions

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\begin{aligned}
& e^{-\beta u}=\left\{\begin{array}{l}
2 \bigcirc \bigcirc \\
1 \\
2
\end{array}\right. \\
& \tau=\frac{4}{63} \times \frac{2}{2} \times \frac{2 \times 2}{4+0+0} \\
& W=63 \times 2 \times 4
\end{aligned}
$$

Attractive InteractionsMolecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\begin{aligned}
& e^{-\beta u}=\left\{\begin{array}{l}
2 \\
1 \\
2
\end{array}\right. \\
& \tau=\frac{4}{63} \times \frac{2}{2} \times \frac{4}{4} \times \frac{1}{1+0+0}
\end{aligned} \begin{aligned}
& W=63 \times 2 \times 4 \times 1
\end{aligned}
$$

Attractive Interactions

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\begin{aligned}
& e^{-\beta u}=\left\{\begin{array}{l}
2 \\
1 \\
2
\end{array}\right. \\
& \tau=\frac{4}{63} \times \frac{2}{2} \times \frac{4}{4} \times \frac{1}{1} \times ? \\
& W=63 \times 2 \times 4 \times 1 \times ?
\end{aligned}
$$

In-class assignment 2
Get the next term

Attractive InteractionsMolecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\left.\begin{array}{l}
e^{-\beta u}=\left\{\begin{array}{l}
2 \\
1 \\
2
\end{array}\right. \\
\tau=\frac{4}{63} \times \frac{2}{2} \times \frac{4}{4} \times \frac{1}{1} \times \frac{2}{2+1 \times 1+0}
\end{array}\right\}
$$

Attractive InteractionsMolecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\begin{aligned}
& e^{-\beta u}=\left\{\begin{array}{l}
2 \\
1 \\
2
\end{array}\right. \\
& \tau=\frac{4}{63} \times \frac{2}{2} \times \frac{4}{4} \times \frac{1}{1} \times \frac{2}{3} \times \frac{2 \times 1}{2+2 \times 2+0} \\
& W=63 \times 2 \times 4 \times 1 \times 3 \times 6
\end{aligned}
$$

Attractive InteractionsMolecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\begin{aligned}
& e^{-\beta u}=\left\{\begin{array}{l}
2 \\
1 \\
2
\end{array}\right. \\
& \tau=\frac{4}{63} \times \frac{2}{2} \times \frac{4}{4} \times \frac{1}{1} \times \frac{2}{3} \times \frac{2}{6} \times \frac{4}{4+0+0} \\
& W=63 \times 2 \times 4 \times 1 \times 3 \times 6 \times 4
\end{aligned}
$$

Attractive Interactions

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\left.\begin{array}{l}
e^{-\beta u}=\left\{\begin{array}{l}
2 \bigcirc O \\
1 \\
2
\end{array}\right. \\
\tau=\frac{4}{63} \times \frac{2}{2} \times \frac{4}{4} \times \frac{1}{1} \times \frac{2}{3} \times \frac{2}{6} \times \frac{4}{4}=0.014
\end{array}\right\}=63 \times 2 \times 4 \times 1 \times 3 \times 6 \times 4=36288 .
$$

Attractive Interactions

O Molecules with attraction

- Generalization uses Boltzmann factor to formulate Rosenbluth weight
- At each step weight is $w_{i}=\sum_{j=1}^{k} e^{-\beta u_{i}(j)}$
- And probability of selecting site j is $\pi_{j}=\frac{e^{-\beta u_{j}}}{w_{i}}$

$$
\begin{aligned}
& e^{-\beta u}=\left\{\begin{array}{l}
2 \bigcirc O \\
1 \\
2
\end{array}\right. \\
& \tau=\frac{4}{63} \times \frac{2}{2} \times \frac{4}{4} \times \frac{1}{1} \times \frac{2}{3} \times \frac{2}{6} \times \frac{4}{4}=0.014 \\
& W=63 \times 2 \times 4 \times 1 \times 3 \times 6 \times 4=36288
\end{aligned}
$$

$\bigcirc \mathrm{W}$ is used just as before: accept with proby $\min \left[1, W_{\text {new }} / W_{\text {old }}\right]$

- energy contribution is built-in: $\prod \tau_{i}=\prod \frac{e^{-\beta u_{i}}}{w_{i}}=\frac{e^{-\beta U}}{W}$

A General Result for Markov Processes 1.

O Consider a process in which there are several ways to generate each trial $\mathrm{i} \rightarrow \mathrm{j}$

O To enforce detailed balance, all routes should be considered in formulating acceptance probability

$$
\pi_{i}\left[\tau_{i j}^{(a)}+\tau_{i j}^{(b)}+\tau_{i j}^{(c)}\right] \min [1, \chi]=\pi_{j}\left[\tau_{j i}^{(a)}+\tau_{j i}^{(b)}+\tau_{j i}^{(c)}\right] \min [1,1 / \chi]
$$

O If there are many ways to generate the trial, this can pose difficulties

A General Result for Markov Processes 1.

O Consider the following recipe for a single-step trial

- Generate the trial $i \rightarrow j$ via route (a), with probability $\tau_{i j}{ }^{(a)}$
- Choose a reverse trial $j \rightarrow i$ via one of the routes, say (b)

Choose it with probability that it would occur as the $\mathrm{j} \rightarrow \mathrm{i}$ route
Probability $=\tau_{\mathrm{ji}}{ }^{(\mathrm{b})} / \tau_{\mathrm{ji}}$

- Accept the (forward) trial as if (a) and (b) were the only routes

$$
\pi_{i} \tau_{i j}^{(a)} \min \left[1, \chi^{a b}\right]=\pi_{j} \tau_{j i}^{(b)} \min \left[1,1 / \chi^{a b}\right]
$$

O This recipe satisfies detailed balance for the overall transition i \rightarrow j

Off the Lattice

O CBMC can be extended to off-lattice models
O Choose a set of trial orientations at random for each atom insertion

O Once a chain is generated in new position, perform same operation tracing out its original location
O Compile Rosenbluth weight for new and original chains to use in acceptance $W=\prod_{\text {atomstrials }} \sum^{-\beta u_{i}(j)}$

CBMC General Comments

O Method begins to fail for sufficiently long chains

- maybe as few as 10 atoms

○ Extensions of method

- Gibbs ensemble
- Branched polymers
- Partial chain regrowth

- Chemical-potential calculation

O General idea can be applied in other ways

- Multi-step trial broken into smaller decisions, with acceptance including consideration of the choices not taken

Parallel Tempering 1.

O At high temperature a broader range of configurations is sampled
O Barriers to transitions are lowered

Ensemble weight, $\mathrm{e}^{-\mathrm{u} / \mathrm{kT}}$

O How to simulate a low-temperature system with hightemperature barrier removal?

Parallel Tempering 2.

O Simulate loosely coupled high- and low-temperature systems in parallel

O Perform moves in which two systems swap configurations

\bigcirc Accept based on $e^{-\beta_{H}\left(U_{2}-U_{1}\right)} e^{-\beta_{L}\left(U_{1}-U_{2}\right)}=e^{-\left(\beta_{H}-\beta_{L}\right)\left(U_{2}-U_{1}\right)}=e^{-\Delta \beta \Delta U}$

Parallel Tempering 3.

O To get reasonable acceptance rate, temperatures should not be too different
O Can be extended to include any number of systems simulated in parallel
O Can be extended to do "tempering" in other variables, such as the chemical potential
O Very well suited for use in conjunction with histogram reweighting

Pruned-Enriched Rosenbluth Method

O At some point along the growth process it may become clear that

- the chain is doomed, or
- the chain is really doing well

O We'd like to enrich the presence of the good ones, while pruning out the ones that look bad
O Use a criterion based on partial Rosenbluth weight

Pruned-Enriched Rosenbluth Method

Other branches

$$
\begin{gathered}
W=2 \quad \longrightarrow \\
\text { Prune }
\end{gathered}
$$

Pruned-Enriched Rosenbluth Method

○ Set cutoffs for intermediate Rosenbluth weights

- duplicate any configuration having $W>W^{>}$, halving weights of new duplicates
- prune configurations having $W<W^{<}$, taking every-other such configuration, and doubling the weight of those not taken

