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Monte Carlo Sampling 
¡ MC method permits great flexibility in 

developing improved sampling methods 
¡ Biasing methods improve sampling 

without changing the limiting distribution 
•  Modification of trial probabilities 

compensated by changes in acceptance and 
reverse-trial probabilities 

¡ Non-Boltzmann sampling methods 
modify the limiting distribution 
•  Desired ensemble average obtained by 

taking a weighted average over the non-
Boltzmann sample 
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Simulating Chain Molecules 

¡ Slow to explore different parts of phase space 
¡ Concerted moves needed to detangle chains 

¡ Algorithms based solely on single-atom moves may be non-
ergodic 
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Modeling Chain Molecules 
¡ Detailed models use full array of potentials discussed 

previously 
•  LJ atoms, with torsion, bend, stretch intramolecular potentials 

¡ Other models try to explain qualitative features of polymer 
behavior 
•  hard- or soft-sphere atoms, only stretch 

bead-spring; tangent spheres; finitely-extensible nonlinear elastic (FENE) 

•  each unit of model might represent a multi-unit segment of the 
true polymer 

•  the only feasible approach for very long chains  
>103 units 

¡ Lattice models are very helpful 
•  discretize space 

various choices for lattice symmetry 

•  chain occupies contiguous sites on lattice 
•  one chain unit per site  
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Generating Configurations of Chains 

¡ Open ensembles (grand-canonical) often preferred 
•  insertion and removal of chains enhances sampling of 

configurations 
¡ Insertions and removals are difficult! 
¡ We’ll examine three approaches 

•  Simple sampling 
•  Configurational bias 
•  Pruned-enriched sampling 

¡ Consider methods in the context of a simple hard-exclusion 
model (no attraction, no bending energy) 
•  All non-overlapping chain configurations are weighted uniformly 
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Simple Sampling 
¡ Molecules are inserted and deleted in an unbiased fashion 

•  Stepwise insertion:  after j segments have been inserted, the (j
+1)th segment is placed at random at one of the sites adjoining 
the last segment 

•  Any attempt that leads to an overlap with an existing segment 
causes the whole trial to be immediately discarded 

1
3π =

1
3π =

1
3π =

reject 

reject 

continue trial 

Successful 
insertion 
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Simple Sampling:  Insertion Likelihood 

¡ What is the probability that this trial 
will occur using simple insertion? 

•  In-class assignment 1 
figure it out 63 sites 
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Simple Sampling:  Insertion Likelihood 

¡ What is the probability that this trial 
will occur using simple insertion? 

¡ Insertion probability for first unit 
•  1/63 

¡ Insert six more units, each with 
probability 1/3 going in the “right” spot 
•  1/36 

¡ Could begin on either end of chain 
•  multiply by 2 

¡ Total probability is product 

63 sites 

6
1 1
63 3
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2 0.000044
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Configurational Bias Monte Carlo 
¡ Based on 1955 idea of Rosenbluth & Rosenbluth 
¡ Apply bias during growth of chain, so that overlaps do not 

lead to rejection of entire trial 
¡ Remove bias during acceptance of complete trial 

•  Accumulate “Rosenbluth weight” during course of trial 

1
2π =

1
2π =

0π =

continue 
trial 
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Configurational-Bias Insertion/Deletion Trial. 
Analysis of Trial Probabilities 

¡ Detailed specification of trial moves and and probabilities 

Event
[reverse event]

Probability
[reverse probability]

Select insertion trial
[select deletion trial]

½
[½ ]

Place molecule at {r}
[delete molecule N+1]

1/W({r})
[1/(N+1)]

Accept move
[accept move]

min(1,χ)
[min(1,1/χ)]

Forward-step 
trial 
probability 

1 1 min(1, )
2 W

χ× ×

Reverse-step 
trial 
probability 

11 1 min(1, )
2 1N χ× ×

+

We’ll work this out later 
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Configurational-Bias Insertion/Deletion Trial.  
Analysis of Detailed Balance 

Detailed balance 

π i π ij π j π ji = 

Limiting 
distribution ( ) ( )1 ( )

NU NN q T e
β βµ

π
− +

=
Ξ

r
r

Forward-step 
trial 
probability 

1 1 min(1, )
2 W

χ× ×
Reverse-step 
trial 
probability 

11 1 min(1, )
2 1N χ× ×

+
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Configurational-Bias Insertion/Deletion Trial.  
Analysis of Detailed Balance 

Detailed balance 

( 1)
1

( 1)
1 1 1 1min(1, ) min(1, )
2 2 1

old newU N U N

N N
e e

W Nq q

β βµ β βµ

χχ
− + − + +

− − +
⎡ ⎤ ⎡ ⎤× × = × ×⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦Ξ Ξ

π i π ij π j π ji = 

Forward-step 
trial 
probability 

1 1 min(1, )
2 W

χ× ×
Reverse-step 
trial 
probability 

11 1 min(1, )
2 1N χ× ×

+

1 ( )
1

q T e
W N

βµχ +=
+

( )
1

q T We
N

βµχ +=
+ Acceptance probability 

Energy is zero in both 
configurations 
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Rosenbluth Weight 
¡ What is W? 
¡ 1/W is the probability that the chain would be inserted into 

the given position 

•  Each placement of a unit in the chain is selected with probability 
 
 
where wi is the number of non-overlap “sibling” alternatives 
available at generation i of the overall insertion 

•  Probability of making this particular insertion is  

1
j

iw
π =

1 1 1 1 1 1 1
63 1 1 1 2 2 1 0.004τ = × × × × × × =

63 1 1 1 2 2 1 252W = × × × × × × =
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NVT Configuration Sampling 

¡ CBMC is also used to generate new configurations of 
present molecules 

¡ Acceptance of any move is based on Rosenbluth weight for 
given move and the reverse move 
•  WA = 63 
•  WB = 252 
•  The move A à B is accepted with probability 1 
•  The move B à A is accepted with probability 63/252 = 1/4 

A B 
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 

( )
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Before, this was a sum of 
terms either zero or one 

(for example) 
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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63 2 0 0τ ×
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63 2W = ×
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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In-class assignment 2 
Get the next term 

4 2 4 1
63 2 4 1 ?τ = × × × ×

63 2 4 1 ?W = × × × ×
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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Attractive Interactions 

¡ Molecules with attraction 
•  Generalization uses Boltzmann factor to formulate Rosenbluth 

weight 
•  At each step weight is 

•  And probability of selecting site j is 
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4 2 4 1 2 2 4
63 2 4 1 3 6 4 0.014τ = × × × × × × =

63 2 4 1 3 6 4 36288W = × × × × × × =
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Attractive Interactions 
¡ Molecules with attraction 

•  Generalization uses Boltzmann factor to formulate Rosenbluth  
weight 

•  At each step weight is 

•  And probability of selecting site j is 

¡ W is used just as before:  accept with proby min[1,Wnew/Wold] 

•  energy contribution is built-in: 
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A General Result for Markov Processes 1. 

¡ Consider a process in which there are several ways to 
generate each trial i à j 

¡ To enforce detailed balance, all routes should be considered 
in formulating acceptance probability 

¡ If there are many ways to generate the trial, this can pose 
difficulties 

( )a
ijτ

( )b
ijτ
( )c
ijτ

( ) ( ) ( ) ( ) ( ) ( )min[1, ] min[1,1/ ]a b c a b c
i jij ij ij ji ji jiπ τ τ τ χ π τ τ τ χ⎡ ⎤ ⎡ ⎤+ + = + +⎣ ⎦ ⎣ ⎦
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A General Result for Markov Processes 1. 

¡ Consider the following recipe for a single-step trial 
•  Generate the trial i à j via route (a), with probability τij

(a) 

•  Choose a reverse trial j à i via one of the routes, say (b) 
Choose it with probability that it would occur as the j à i route 

Probability = τji
(b)/τji  

•  Accept the (forward) trial as if (a) and (b) were the only routes 

¡ This recipe satisfies detailed balance for the overall 
transition i à j  

( ) ( )min[1, ] min[1,1/ ]a bab ab
i jij jiπ τ χ π τ χ=
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¡ CBMC can be extended to off-lattice models 
¡ Choose a set of trial orientations at random for each atom 

insertion 

¡ Once a chain is generated in new position, perform 
 same operation tracing out its original location 

¡ Compile Rosenbluth weight for new and 
 original chains to use in acceptance 

¡ Note that each insertion may be accomplished via 
multiple routes, differing in the discarded atom trials 

Off the Lattice 

et cetera 

( )

trialsatoms
ji

iu jW e β−= ∑∏
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CBMC General Comments 

¡ Method begins to fail for sufficiently long chains 
•  maybe as few as 10 atoms 

¡ Extensions of method 
•  Gibbs ensemble 
•  Branched polymers 
•  Partial chain regrowth 
•  Chemical-potential calculation 

¡ General idea can be applied in other ways 
•  Multi-step trial broken into smaller decisions, with acceptance 

including consideration of the choices not taken 
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Parallel Tempering 1. 

¡ At high temperature a broader range of configurations is 
sampled 

¡ Barriers to transitions are lowered 

¡ How to simulate a low-temperature system with high-
temperature barrier removal? 

Phase space, 𝚪 

Ensemble 
weight, e-u/kT 

High temperature 

Low temperature 

trapped 

escape 
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Parallel Tempering 2. 
¡ Simulate loosely coupled high- and low-temperature systems 

in parallel 

¡ Perform moves in which two systems swap configurations 

¡ Accept based on 

High temperature Low temperature 

( )( )2 12 1 1 2( ) ( ) H LH L U UU U U U Ue e e eβ ββ β β− − −− − − − −Δ Δ= =



32 

Parallel Tempering 3. 

¡ To get reasonable acceptance rate, temperatures should not 
be too different 

¡ Can be extended to include any number of systems simulated 
in parallel 

¡ Can be extended to do “tempering” in other variables, such 
as the chemical potential 

¡ Very well suited for use in conjunction with histogram 
reweighting 
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Pruned-Enriched Rosenbluth Method 

¡ At some point along the growth process it may become clear 
that  
•  the chain is doomed, or 
•  the chain is really doing well 

¡ We’d like to enrich the presence of the good ones, while 
pruning out the ones that look bad 

¡ Use a criterion based on partial Rosenbluth weight 
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Pruned-Enriched Rosenbluth Method 

3W =
So far, so good.  
Let’s make another 

3/ 2W =

3/ 2W =

3W =

3W =

3W =

9W =

Not so good.   
Time to prune 

Make another 

Other branches 2W =

9
2W =

9
2W =

Prune 4W =
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Pruned-Enriched Rosenbluth Method 

¡ Set cutoffs for intermediate Rosenbluth weights 
•  duplicate any configuration having W > W>, halving weights of 

new duplicates 
•  prune configurations having W < W<, taking every-other such 

configuration, and doubling the weight of those not taken 


