CE 530 Molecular Simulation

1

Lecture 20 Phase Equilibria

David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu

Thermodynamic Phase Equilibria

- O Certain thermodynamic states find that two (or more) phases may be equally stable
 - *thermodynamic phase coexistence*
- O Phases are distinguished by an order parameter; e.g.
 - *density*
 - structural order parameter
 - magnetic or electrostatic moment

O Intensive-variable requirements of phase coexistence

- $T^a = T^b$
- $P^a = P^b$

•
$$\mu_i^a = \mu_i^b, \ i = 1, ..., C$$

Approximate Methods for Phase Equilibria by Molecular Simulation 1.

O Adjust field variables until crossing of phase transition is observed

• e.g., lower temperature until condensation/freezing occurs

O Problem: metastability may obsure location of true transition

Approximate Methods for Phase Equilibria by Molecular Simulation 2.

O Select density variable inside of two-phase region

- choose density between liquid and vapor values
- O Problem: finite system size leads to large surface-to-volume ratios for each phase
 - bulk behavior not modeled

O Metastability may still be a problem

5

O Try it out with the <u>SW NVT MD applet</u>

- O Search for conditions that satisfy equilibrium criteria
 - equality of temperature, pressure, chemical potentials
- O Difficulties
 - evaluation of chemical potential often is not easy
 - tedious search-and-evaluation process

- O Search for conditions that satisfy equilibrium criteria
 - equality of temperature, pressure, chemical potentials
- O Difficulties
 - evaluation of chemical potential often is not easy
 - tedious search-and-evaluation process

- O Search for conditions that satisfy equilibrium criteria
 - equality of temperature, pressure, chemical potentials
- O Difficulties
 - evaluation of chemical potential often is not easy
 - tedious search-and-evaluation process

- O Search for conditions that satisfy equilibrium criteria
 - equality of temperature, pressure, chemical potentials
- O Difficulties
 - evaluation of chemical potential often is not easy
 - tedious search-and-evaluation process

- O Search for conditions that satisfy equilibrium criteria
 - equality of temperature, pressure, chemical potentials

O Difficulties

- evaluation of chemical potential often is not easy
- tedious search-and-evaluation process

- O Search for conditions that satisfy equilibrium criteria
 - equality of temperature, pressure, chemical potentials
- O Difficulties
 - evaluation of chemical potential often is not easy
 - tedious search-and-evaluation process

Gibbs Ensemble 1.

12

O Panagiotopoulos in 1987 introduced a clever way to simulate coexisting phases without an interface

Gibbs Ensemble 2.

O MC simulation includes moves that couple the two simulation volumes

Particle exchange equilibrates chemical potential

Volume exchange equilibrates pressure

Incidentally, the coupled moves enforce mass and volume balance

O Try it out with the LJ GEMC applet

Gibbs Ensemble Formalism

O Partition function

$$Q^{GE}(N,V,T) = \sum_{N_1=0}^{N} \int_{0}^{V} dV_1 Q(N_1,V_1,T) Q(N-N_1,V-V_1,T)$$

O Limiting distribution

 $N_2 \equiv N - N_1$ $V_2 \equiv V - V_1$

$$\pi(\mathbf{r}^{N}, N_{1}, V_{1}) dV_{1} d\mathbf{s}^{N_{1}} d\mathbf{s}^{N_{2}} = \frac{\Lambda^{3N}}{Q^{GE}} \left[V_{1}^{N_{1}} d\mathbf{s}^{N_{1}} e^{-\beta U(\mathbf{s}^{N_{1}}, V_{1})} \right] \left[V_{2}^{N_{2}} d\mathbf{s}^{N_{2}} e^{-\beta U(\mathbf{s}^{N_{2}}, V_{2})} \right]$$

O General algorithm. For each trial:

- with some pre-specified probability, select molecules displacement/rotation trial volume exchange trial molecule exchange trial
- conduct trial move and decide acceptance

Molecule-Exchange Trial Move Analysis of Trial Probabilities

15

O Detailed specification of trial moves and probabilities

Event [reverse event]	Probability [reverse probability]	$ \begin{array}{c} \hline Forward-step \\ trial \\ mathematical \\ \hline \end{array} \qquad \qquad$	
Select box A [select box B]	1/2 1/2	Reverse-step 1 ds (11)	
Select molecule k [select molecule k]	1/N _A [1/(N _B +1)]	trial $\frac{1}{2} \times \frac{1}{N_B + 1} \times \min(1, \frac{1}{\chi})$ probability	
Move to r^{new} Scaled [move back to r^{old}] Scaled volume ds/1 [ds/1]			
Accept move [accept move]	$\min(1,\chi) \leftarrow \\ [\min(1,1/\chi)]$	$-\chi$ is formulated to satisfy detailed balance	

Molecule-Exchange Trial Move Analysis of Detailed Balance

Volume-Exchange Trial Move Analysis of Trial Probabilities

19

O Take steps in $\lambda = \ln(V_A/V_B)$ $d\lambda = \left(\frac{1}{V_A} + \frac{1}{V_B}\right) dV_A = \frac{V}{V_A V_B} dV_A$ $dV_A = \frac{1}{V} V_A V_B d\lambda$ O Detailed specification of trial moves and probabilities

Event [reverse event]	Probability [reverse probability]	Forward-step trial probability Reverse-step trial probability	$\frac{d\lambda}{\Delta} \times \min(1,\chi)$
Step to λ^{new} [step to λ^{old}]	$d\lambda/\Delta$ $d\lambda/\Delta$		$\frac{d\lambda}{\Delta} \times \min(1, \frac{1}{\chi})$
Accept move [accept move]	$\min(1,\chi)$ [min(1,1/ χ)]		
I	Ι	Ι	

Volume-Exchange Trial Move Analysis of Detailed Balance

Volume-Exchange Trial Move Analysis of Detailed Balance *Forward-step Reverse-step* $\frac{d\lambda}{\Lambda} \times \min(1,\chi)$ $\frac{d\lambda}{\Lambda} \times \min(1,\frac{1}{\chi})$ trial trial probability probability Detailed balance π_i π_{ii} = π_j π_{ji} $\frac{e^{-\beta U^{old}}V_{A,i}^{N_A+1}d\mathbf{s}^{N_1}V_{B,i}^{N_B+1}d\mathbf{s}^{N_B}}{\Lambda^{-3N}O^{GE}} \left[\frac{d\lambda\min(1,\chi)}{\Delta}\right] = \frac{e^{-\beta U^{new}}V_{A,j}^{N_A+1}d\mathbf{s}^{N_A}V_{B,j}^{N_B+1}d\mathbf{s}^{N_B}}{\Lambda^{-3N}O^{GE}} \left[\frac{d\lambda\min(1,\frac{1}{\chi})}{\Delta}\right]$ Limiting distribution $\pi(\mathbf{r}^{N}, N_{A}, V_{A}) d\lambda d\mathbf{s}^{N_{A}} d\mathbf{s}^{N_{B}} = \frac{d\lambda\Lambda^{3N}}{VO^{GE}} \left[V_{A}^{N_{A}+1} d\mathbf{s}^{N_{A}} e^{-\beta U(\mathbf{s}^{N_{A}}, V_{A})} \right] \left[V_{B}^{N_{B}+1} d\mathbf{s}^{N_{B}} e^{-\beta U(\mathbf{s}^{N_{B}}, V_{B})} \right]$

Gibbs Ensemble Limitations

O Limitations arise from particle-exchange requirement

- Molecular dynamics (polarizable models)
- Dense phases, or complex molecular models

• Solid phases

 $N = 4n^3 (fcc)$

Approaching the Critical Point

O Critical phenomena are difficult to capture by molecular simulation
O Density fluctuations are related to compressibility

O Correlations between fluctuations important to behavior

- *in thermodynamic limit correlations have infinite range*
- *in simulation correlations limited by system size*
- surface tension vanishes

Critical Phenomena and the Gibbs Ensemble

O Phase identities break down as critical point is approached

- Boxes swap "identities" (liquid vs. vapor)
- Both phases begin to appear in each box surface free energy goes to zero

Gibbs-Duhem Integration

O GD equation can be used to derive Clapeyron equation

$$\left(\frac{\partial \ln p}{\partial \beta}\right)_{\sigma} = -\frac{\Delta h}{\Delta Z}$$

- equation for coexistence line
- O Treat as a nonlinear first-order ODE
 - use simulation to evaluate right-hand side
- Trace an integration path the coincides with the coexistence line

GDI Simulation Algorithm

- O Estimate pressure and temperature from predictor
- O Begin simultaneous NpT simulation of both phases at the estimated conditions
- As simulation progresses, estimate new slope from ongoing simulation data and use with corrector to adjust p and T
- O Continue simulation until the iterations and the simulation averages converge
- O Repeat for the next state point

Each simulation yields a coexistence point. Particle insertions are never attempted.

GDI Applications and Extensions

O Applied to a pressure-temperature phase equilibria in a wide variety of model systems

- *emphasis on applications to solid-fluid coexistence*
- O Can be extended to describe coexistence in other planes
 - variation of potential parameters

 inverse-power softness
 stiffness of polymers
 range of attraction in square-well and triangle-well
 variation of electrostatic polarizability
 - as with free energy methods, need to identify and measure variation of free energy with potential parameter

$$\frac{\partial \beta A}{\partial \lambda} = \left\langle \frac{\partial \beta U}{\partial \lambda} \right\rangle$$

• mixtures

Semigrand Ensemble

O Thermodynamic formalism for mixtures

 $d(\beta A) = Ud\beta - \beta PdV + \beta \mu_1 dN_1 + \beta \mu_2 dN_2 + \beta \mu_1 dN_2 - \beta \mu_1 dN_2$

O Rearrange $d(\beta A) = Ud\beta - \beta PdV + \beta \mu_1 d(N_1 + N_2) + \beta(\mu_2 - \mu_1)dN_2$ = $Ud\beta - \beta PdV + \beta \mu_1 dN + \beta \Delta \mu_2 dN_2$

O Legendre transform $d(\beta Y) \equiv d(\beta A - \beta \Delta \mu_2 N_2)$

 $= Ud\beta - \beta PdV + \beta \mu_1 dN - N_2 d(\beta \Delta \mu_2)$

- Independent variables include N and $\Delta \mu_2$
- Dependent variables include N₂ must determine this by ensemble average

ensemble includes elements differing in composition at same total N

O Ensemble distribution

$$\pi(\mathbf{r}^N, \mathbf{p}^N, N_2) = \frac{1}{Y} \frac{1}{h^{3N} N!} e^{-\beta E(p^N, r^N, N_2)} e^{+N_2 \beta \Delta \mu_2}$$

GDI/GE with the Semigrand Ensemble

O Governing differential equation (pressure-composition plane)

$$\left(\frac{\partial \ln p}{\partial \beta \Delta \mu_2}\right)_{T,\sigma} = \frac{\Delta x_2}{\Delta Z}$$

Simple LJ Binary

GDI with the Semigrand Ensemble

O Freezing of polydisperse hard spheres

- appropriate model for colloids
- O Integrate in pressure-polydispersity plane

O Findings

- $\left(\frac{dp}{dv}\right)_{sat} = \frac{\Delta m_2 / 2v^2}{\Delta(V/N)}$
- upper polydisersity bound to freezing
- re-entrant melting

Other Views of Coexistence Surface

- O Dew and bubble lines
- O Residue curves
- O Azeotropes
 - semigrand ensemble
 - *formulate appropriate differential equation*

$$\left(\frac{dP^{sat}}{d\beta}\right)_{azeo} = -\frac{h^L - h^V}{\beta(v^L - v^V)}$$

$$\left(\frac{d(\beta\Delta\mu)}{d\beta}\right)_{azeo} = \frac{\left\{\left(\frac{\partial X_1}{\partial\beta}\right)_{P,\beta\Delta\mu} - \left(\frac{\partial Y_1}{\partial\beta}\right)_{P,\beta\Delta\mu}\right\} + \left\{\left(\frac{\partial X_1}{\partial P}\right)_{\beta,\beta\Delta\mu} - \left(\frac{\partial Y_1}{\partial P}\right)_{\beta,\beta\Delta\mu}\right\} \left(\frac{dP^{sat}}{d\beta}\right)_{azeo}}{\left\{\left(\frac{\partial Y_1}{\partial\beta\Delta\mu}\right)_{P,\beta} - \left(\frac{\partial X_1}{\partial\beta\Delta\mu}\right)_{P,\beta}\right\}}$$

• *integrate as in standard GDI method* right-hand side involves partial molar properties

Summary

- O Thermodynamic phase behavior is interesting and useful
- O Obvious methods for evaluating phase behavior by simulation are too approximate
- O Rigorous thermodynamic method is tedious
- O Gibbs ensemble revolutionized methodology
 - two coexisting phases without an interface
- O Gibbs-Duhem integration provides an alternative to use in situations where GE fails
 - dense and complex fluids
 - solids

O Semigrand ensemble is useful formalism for mixturesO GDI can be extended in many ways