CE 530 Molecular Simulation

1

Lecture 10 Simple Biasing Methods

David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu

Review

O Monte Carlo simulation

• *Markov chain to generate elements of ensemble with proper distribution*

O Metropolis algorithm

- relies on microscopic reversibility $\pi_i \pi_{ij} = \pi_j \pi_{ji}$
- two parts to a Markov step
 - → generate trial move (underlying transition probability matrix)
 - → decide to accept move or keep original state

O Determination of acceptance probabilities

- detailed analysis of forward and reverse moves
- we examined molecule displacement and volume-change trials

Performance Measures

O How do we improve the performance of a MC simulation?

- characterization of performance
- means to improve performance

O Return to our consideration of a general Markov process

- fixed number of well defined states
- *fully specified transition-probability matrix*
- *use our three-state prototype* O Performance measures
 - rate of convergence
 - variance in occupancies

 $\Pi \equiv \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix}$

3

Rate of Convergence 1.

O What is the likely distribution of states after a run of finite length?

 $\begin{pmatrix} (n) \\ (n) \end{pmatrix}$

• *Is it close to the limiting distribution?*

Probability of being in state 3 after n moves, beginning in state 1

$$\pi_1^{(n)} = \pi_1^{(0)} \Pi^n \equiv \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\ \pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\ \pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)} \end{pmatrix} = \begin{pmatrix} \pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \end{pmatrix}$$

We can apply similarity transforms to understand behavior of Πⁿ
 ⇒ eigenvector equation ΠΦ = ΦΛ ⇒ Π = ΦΛΦ⁻¹

eigenvalue matrix:
$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

eigenvector matrix $\Phi =$

$$\left(\phi_1\right)\left(\phi_2\right)\left(\phi_3\right)\right)$$

Rate of Convergence 1.

O What is the likely distribution of states after a run of finite length?

(m) (m)

• *Is it close to the limiting distribution?*

Probability of being in state 3 after n moves, beginning in state 1

$$\pi_1^{(n)} = \pi_1^{(0)} \Pi^n \equiv \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\ \pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\ \pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)} \end{pmatrix} = \begin{pmatrix} \pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \end{pmatrix}$$

 $\left(\left(\cdot \cdot \cdot \right) \right)$

We can apply similarity transforms to understand behavior of Πⁿ
 ⇒ eigenvector equation ΠΦ = ΦΛ ⇒ Π = ΦΛΦ⁻¹

$$\Pi^{n} = \left(\Phi \Lambda \Phi^{-1}\right) \left(\Phi \Lambda \Phi^{-1}\right) \dots \left(n \text{ times}\right) \dots \Phi^{-1}$$
$$= \Phi \Lambda \left(\Phi^{-1} \Phi\right) \Lambda \left(\Phi^{-1} \Phi\right) \dots$$
$$= \Phi \Lambda^{n} \Phi^{-1} \qquad \Lambda^{n} = \begin{pmatrix} \lambda_{1}^{n} & 0 & 0 \\ 0 & \lambda_{2}^{n} & 0 \\ 0 & 0 & \lambda_{3}^{n} \end{pmatrix}$$

Rate of Convergence 2.

O Likely distribution after finite run

$$\pi_i^{(n)} = \pi_i^{(0)} \Pi^n = \pi_i^{(0)} \Phi \Lambda^n \Phi^{-1}$$

$$\Lambda^{n} = \begin{pmatrix} \lambda_{1}^{n} & 0 & 0 \\ 0 & \lambda_{2}^{n} & 0 \\ 0 & 0 & \lambda_{3}^{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda_{2}^{n} & 0 \\ 0 & 0 & \lambda_{3}^{n} \end{pmatrix} \stackrel{=}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

O Convergence rate determined by magnitude of other eigenvalues

• very close to unity indicates slow convergence

Occupancy Variance 1.

- O Imagine repeating Markov sequence many times (L→∞), each time taking a fixed number of steps, M
 - *tabulate histogram for each sequence;* $p_i^{(k)} = \frac{m_i^{(k)}}{M}$
 - examine variances in occupancy fraction

$$\overline{\sigma_i^2} = \sum_{k=1}^L \left(p_i^{(k)} - \pi_i \right)^2 \qquad \overline{\sigma_i \sigma_j} = \sum_{k=1}^L \left(p_i^{(k)} - \pi_i \right) \left(p_j^{(k)} - \pi_j \right)$$

7

• through propagation of error, the occupancy (co)variances sum to give the variances in the ensemble averages; e.g. (for a 2-state system)

$$\sigma_U^2 = U_1^2 \overline{\sigma_1^2} + U_2^2 \overline{\sigma_2^2} + 2U_1 U_2 \overline{\sigma_1 \sigma_2}$$

• we would like these to be small

Occupancy Variance 2.

O A formula for the occupancy (co)variance is known

 $M\overline{\sigma_i^2} = \pi_i^2 + 2\pi_i s_{ii} - 1 \quad \text{variance}$ $M\overline{\sigma_i\sigma_j} = \pi_i \pi_j + \pi_i s_{ij} + \pi_j s_{ji} \quad \text{covariance}$ $S = (\mathbf{I} - \mathbf{\Pi} + \mathbf{\Phi})^{-1} - \mathbf{\Phi}$

- right-hand sides independent of M
- standard deviation decreases as $1/\sqrt{M}$

Example Performance Values

9

Limiting distribution $\pi = (0.25 \ 0.5 \ 0.25)$

Inefficient	$\Pi = \begin{pmatrix} 0.97 & 0.02 & 0.01 \\ 0.01 & 0.98 & 0.01 \\ 0.01 & 0.02 & 0.97 \end{pmatrix}$	$\lambda = \begin{pmatrix} 1 & 0.96 & 0.96 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 9.2 & -6.1 & -3.1 \\ -6.1 & 12.2 & -6.1 \\ -3.1 & -6.1 & 9.2 \end{pmatrix}$
Barker	$\Pi = \begin{pmatrix} 0.42 & 0.33 & 0.25 \\ 0.17 & 0.66 & 0.17 \\ 0.25 & 0.33 & 0.42 \end{pmatrix}$	$\lambda = \begin{pmatrix} 1 & 0.33 & 0.17 \end{pmatrix} \Sigma = \begin{pmatrix} 0.30 & -0.25 & -0.05 \\ -0.25 & 0.50 & -0.25 \\ -0.05 & -0.25 & 0.30 \end{pmatrix}$
Most efficient	$\Pi = \begin{pmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{pmatrix}$	$\lambda = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 0.125 & 0 & -0.125 \\ 0 & 0 & 0 \\ -0.125 & 0 & 0.125 \end{pmatrix}$
Metropolis	$\Pi = \begin{pmatrix} 0.0 & 0.5 & 0.5 \\ 0.25 & 0.5 & 0.25 \\ 0.5 & 0.5 & 0.0 \end{pmatrix}$	$\lambda = \begin{pmatrix} 1 & 0 & -0.5 \end{pmatrix} \Sigma = \begin{pmatrix} 0.10 & -0.125 & 0.02 \\ -0.125 & 0.25 & -0.125 \\ 0.02 & -0.125 & 0.10 \end{pmatrix}$

Example Performance Values

$$\Pi = \begin{pmatrix} 0 & 0.99 & 0.01 & 0 \\ 0.99 & 0 & 0 & 0.01 \\ 0 & 0.01 & 0 & 0.99 \\ 0 & 0.01 & 0.99 & 0 \end{pmatrix}$$
Lots of movement $1 \rightarrow 2; 3 \rightarrow 4$
Little movement $(1,2) \rightarrow (3,4)$

$$\pi = (0.25 \quad 0.25 \quad 0.25 \quad 0.25)$$
Limiting distribution
$$\lambda = (1 \quad 0.98 \quad -0.99 \quad -0.99)$$
Eigenvalues
$$\Sigma = \begin{pmatrix} 6.2 & 6.2 & -6.2 & -6.2 \\ 6.2 & 6.2 & -6.2 & -6.2 \\ -6.2 & -6.2 & 6.2 & 6.2 \\ -6.2 & -6.2 & 6.2 & 6.2 \end{pmatrix}$$
Covariance matrix

Heuristics to Improve Performance

O Keep the system moving

- *minimize diagonal elements of probability matrix*
- avoid repeated transitions among a few states

O Typical physical situations where convergence is poor

large number of equivalent states with poor transitions between regions of them

→ entangled polymers

• *large number of low-probability states and a few high-probability states*

Biasing the Underlying Markov Process

O Detailed balance for trial/acceptance Markov process

• $\pi_i \tau_{ij} \min(1, \chi) = \pi_j \tau_{ji} \min(1, 1/\chi)$

O Often it happens that τ_{ii} is small while χ is large (or vice-versa)

• even if product is of order unity, π_{ij} will be small because of min()

O The underlying TPM can be adjusted (biased) to enhance movement among states

- bias can be removed in reverse trial probability, or acceptance
- require in general

$$\chi = \frac{\pi_j \tau_{ji}}{\pi_i \tau_{ij}}$$

- *ideally*, *χ will be unity (all trials accepted) even for a "large" change*→ rarely achieve this level of improvement
- requires coordination of forward and reverse moves

Example: Biased Insertion in GCMC

O Grand-canonical Monte Carlo (µVT)

- *fluctuations in N require insertion/deletion trials*
- *at high density, insertions may be rarely accepted* → τ_{ij} is small for *j* a state having additional but non-overlapping molecule
- at high chemical potential, limiting distribution strongly favors additional molecules $\pi \propto e^{\beta \mu N}$

 $\Rightarrow \chi$ is large for (N+1) state with no overlap

- *apply biasing to improve acceptance*
- first look at unbiased algorithm

Insertion/Deletion Trial Move 1. Specification

- O Gives new configuration of same volume but different number of molecules
- O Choose with equal probability:
 - insertion trial: add a molecule to a randomly selected position
 - *deletion trial: remove a randomly selected molecule from the system*
- O Limiting probability distribution
 - grand-canonical ensemble

$$\pi(\mathbf{r}^{N}) = \frac{1}{\Xi} \frac{1}{\Lambda^{dN}} e^{-\beta U(\mathbf{r}^{N}) + \beta \mu N} d\mathbf{r}^{N}$$

Insertion/Deletion Trial Move 2. Analysis of Trial Probabilities

15

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	Forward-step trial $\frac{1}{2} \times \frac{d\mathbf{r}}{V} \times \min(1, \chi)$
Select insertion trial [select deletion trial]	$\begin{bmatrix} 1/2\\ [1/2] \end{bmatrix}$	Reverse-step 1 1
Place molecule at \mathbf{r}_{N+1} [delete molecule N+1]	dr/V [1/(N+1)]	trial $\frac{1}{2} \times \frac{1}{N+1} \times \min(1, \frac{1}{\chi})$ probability
Accept move [accept move]	$\min(1,\chi) \leftarrow \min(1,1/\chi)$	$-\chi$ is formulated to satisfy detailed balance

Biased Insertion/Deletion Trial Move 1. Specification

- O Trial-move algorithm. Choose with equal probability:
 - Insertion
 - → identify region where insertion will not lead to overlap
 - \Rightarrow let the volume of this region be ϵV
 - → place randomly somewhere <u>in this region</u>
 - Deletion
 - → select any molecule and delete it

Biased Insertion/Deletion Trial Move 2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Select insertion trial $\frac{1}{2}$ $probability$ [select deletion trial] $\frac{1}{2}$ $\frac{1}{2} \times \frac{1}{N+1} \times \min(1, \frac{1}{\chi})$ Place molecule at \mathbf{r}_{N+1} $d\mathbf{r}/(\epsilon V)$ \mathbf{rial} [delete molecule N+1] $\frac{1}{1/(N+1)}$ $\frac{1}{2} \times \frac{1}{N+1} \times \min(1, \frac{1}{\chi})$ Accept move $\min(1, \chi)$ Only difference from unbiased[accept move] $\min(1, 1/\chi)$ algorithm	Event [reverse event]	Probability [reverse probability]	Forward-step trial $\frac{1}{2} \times \frac{d\mathbf{r}}{\varepsilon V} \times \min(1, \chi)$	
Place molecule at \mathbf{r}_{N+1} $d\mathbf{r}/(\varepsilon V)$ $trial\frac{1}{2} \times \frac{1}{N+1} \times \min(1, \frac{1}{\chi})[delete molecule N+1][1/(N+1)]min(1,\chi)probability\frac{1}{2} \times \frac{1}{N+1} \times \min(1, \frac{1}{\chi})Accept movemin(1,\chi)Only difference from unbiasedalgorithm$	Select insertion trial [select deletion trial]	$\begin{bmatrix} 1/2\\ [1/2] \end{bmatrix}$	probability Reverse-step	
Accept move $min(1,\chi)$ Only difference from unbiased[accept move] $[min(1,1/\chi)]$ algorithm	Place molecule at r _{N+1} [delete molecule N+1]	d r /(εV) [1/(N+1)]	$\frac{trial}{probability} \sqrt{\frac{-x}{2}} \frac{1}{N+1} \times \min(1, \frac{1}{\chi})$	
	Accept move [accept move]	$\min(1,\chi)$ [min(1,1/ χ)]	Only difference from unbiased algorithm	

Biased Insertion/Deletion Trial Move3. Analysis of Detailed Balance

• ε must be computed even when doing a deletion, since χ depends upon it

 \Rightarrow for deletion, ε is computed for configuration after molecule is removed

 \Rightarrow for insertion, ε is computed for configuration before molecule is inserted

21

Biased Insertion/Deletion Trial Move 4. Comments

O Advantage is gained when ε is small and $e^{\beta\mu}$ is large

- for hard spheres near freezing
 - $\Rightarrow \beta \mu + \ln(V/\Lambda N)$: 16 (difficult to accept deletion without bias)

 $ightarrow \varepsilon: 10^{-7}$ (difficult to find acceptable insertion without bias)

$$\chi = \varepsilon e^{\beta \mu} \frac{V}{\Lambda(N+1)} e^{-\beta \Delta U}$$

O Identifying and characterizing (computing ε) the non-overlap region may be difficult

Force-Bias Trial Move 1. Specification

O Move atom in preferentially in direction of lower energy

- select displacement Sr in a cubic volume centered on present position
- within this region, select with probability

 $p(\delta \mathbf{r}) = \frac{\exp[+\lambda\beta \mathbf{f} \cdot \delta \mathbf{r}]}{C(\mathbf{f})} = \frac{e^{\lambda\beta f_x \delta r_x} e^{\lambda\beta f_y \delta r_y}}{c_x c_y} \qquad Favors \ \delta r_y \text{ in same direction as } \mathbf{f}_y$

•
$$C = c_x c_y$$
 is a normalization
constant
 $c_x = \int_{-\delta r_{\text{max}}}^{+\delta r_{\text{max}}} e^{\lambda \beta f_x \delta r_x} d(\delta r_x) = \frac{\sinh(\lambda \beta f_x \delta r_{\text{max}})}{\lambda \beta f_x}$

Pangali, Rao, and Berne, Chem. Phys. Lett. 47 413 (1978)

 $2\delta r_{\rm max}$

An Aside: Sampling from a Distribution

O <u>Rejection method</u> for sampling from a complex distribution p(x)

- write p(x) = Ca(x)b(x)
 - \Rightarrow a(x) is a simpler distribution
 - \Rightarrow b(x) lies between zero and unity
- recipe
 - \Rightarrow generate a uniform random variate U on (0,1)
 - \rightarrow generate a variate *X* on the distribution a(x)
 - \Rightarrow if $U \le b(X)$ then keep X
 - \Rightarrow if not, try again with a new U and X

O We wish to sample from $p(x) = e^{qx}$ for $x = (-\delta, +\delta)$

- we know how to sample on $e^{q(x-x0)}$ for $x = (x_0, \infty)$ $\Rightarrow x = x_0 - q \ln[U(0,1)]$
- use rejection method with
 - \Rightarrow a(x) = e^{q(x-\delta)}

 \Rightarrow b(x) = 0 for x < - δ or x > + δ ; 1 otherwise

- i.e., sample on a(x) and reject values outside desired range

24

Force-Bias Trial Move 2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	$Forward-step \underline{p^{old}(\delta \mathbf{r})d\mathbf{r}}_{trial} \times \min(1,\chi)$
Select molecule k [select molecule k]	1/N [1/N]	Reverse-step_new (S_r) dr
Move to r ^{new} [move back to r ^{old}]	$p^{old}(\delta \mathbf{r})$ [$p^{new}(-\delta \mathbf{r})$]	trial $\frac{p}{N} \times \min(1, \frac{1}{\chi})$ probability
Accept move [accept move]	$\min(1,\chi)$ $[\min(1,1/\chi)]$	

Force-Bias Trial Move 4. Comments

O Necessary to compute force both before and after move

$$\chi = \frac{C(\mathbf{f}^{old})}{C(\mathbf{f}^{new})} e^{-\beta(U^{new} - U^{old}) - \lambda\beta(\mathbf{f}^{new} + \mathbf{f}^{old}) \cdot \delta\mathbf{r}}$$

O From definition of force $\mathbf{f} = -\nabla U$

- $U^{new} \approx U^{old} \frac{1}{2} (\mathbf{f}^{new} + \mathbf{f}^{old}) \cdot \delta \mathbf{r}$
- $\lambda = 1/2$ makes argument of exponent nearly zero
- $\lambda = 0$ reduces to unbiased case

O Force-bias makes Monte Carlo more like molecular dynamics

• example of hybrid MC/MD method

O Improvement in convergence by factor or 2-3 observed

• worth the effort?

Association-Bias Trial Move 1. Specification

O Low-density, strongly attracting molecules

- when together, form strong associations that take long to break
- when apart, are slow to find each other to form associations
- performance of simulation is a problem
- Perform moves that put one molecule preferentially in vicinity of another
 - *suffer overlaps, maybe 50% of time*
 - compare to problem of finding associate only 1 time in (say) 1000

O Must also preferentially attempt reverse move

Association-Bias Trial Move 1. Specification

O With equal probability, choose a move:

- Association
 - → select a molecule that is not associated
 - → select another molecule (associated or not)
 - put first molecule in volume eV in vicinity of second
- Dis-association
 - → select a molecule that is associated
 - → move it to a random position anywhere in the system

Association-Bias Trial Move 2. Analysis of Trial Probabilities

31

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	Forward-step 1 trial $\frac{1}{N_u N_a \varepsilon V} \times \min(1, \chi)$	
Select molecule k [select molecule k]	1/N _{un} [1/(N _{assoc} +1)]	Reverse-step 1	
Move to r ^{new} [move back to r ^{old}]	1/(N _{assoc} εV) (*) [1/V]	trial $\frac{1}{(N_a+1)V} \times \min(1,\frac{1}{\chi})$ probability	
Accept move [accept move]	$\min(1,\chi)$ [min(1,1/ χ)]		
1	Ι	(*) incorrect	

$$arr$$

Association-Bias Trial Move 4. Comments

 \bigcirc Need to account for full probability of positioning in \mathbf{r}^{new}

This region has extra probability of being selected (in vicinity of two molecules)

- must look in local environment of trial position to see if it lies also in the neighborhood of other atoms
 - \rightarrow add a 1/ ϵ V for each atom
- Algorithm requires to identify or keep track of number of associated/unassociated molecules

Using an Approximation Potential 1. Specification

• Evaluating the potential energy is the most time-consuming part of a simulation

O Some potentials are especially time-consuming, e.g.

- three-body potentials
- Ewald sum

O Idea:

- move system through Markov chain using an approximation to the real potential (cheaper to compute)
- *at intervals, accept or reject entire subchain using correct potential*

Approximation Potential 2. Analysis of Trial Probabilities

O What are π_{ii} and π_{ii} ?

• O Given that each elementary Markov step obeys detailed balance for the approximate potential...

- ...one can show that the "super-step" $i \rightarrow j$ also obeys detailed balance (for the approximate potential)
- $\pi_i^a \pi_{ij}^{(n)} = \pi_j^a \pi_{ji}^{(n)}$
- very hard to analyze without this result

→ would have to consider all paths from i to j to get transition probability

Approximation Potential 3. Analysis of Detailed Balance

• Formulate acceptance criterion to satisfy detailed balance for the real potential

$$\pi_{i}\pi_{ij}^{(n)}\min(1,\chi) = \pi_{j}\pi_{ji}^{(n)}\min(1,1/\chi)$$
Approximate-potential

$$detailed balance$$

$$\pi_{i}^{a}\pi_{ji}^{(n)}\prod(1,\chi) = \pi_{j}\pi_{ji}^{(n)}\min(1,1/\chi)$$

$$\pi_{i}^{a}\pi_{ij}^{(n)} = \pi_{j}^{a}\pi_{ji}^{(n)}$$

$$\pi_{i}^{a}\pi_{ij}^{(n)} = \pi_{j}^{a}\pi_{ji}^{(n)}$$
State i
State j

36

Approximation Potential 3. Analysis of Detailed Balance

• Formulate acceptance criterion to satisfy detailed balance for the real potential

$$\pi_{i}\pi_{ij}^{(n)}\min(1,\chi) = \pi_{j}\pi_{ji}^{(n)}\min(1,1/\chi)$$
Approximate-potential detailed balance
$$\pi_{i}\left(\frac{\pi_{j}^{a}}{\pi_{i}^{a}}\pi_{ji}^{(n)}\right)\min(1,\chi) = \pi_{j}\pi_{ji}^{(n)}\min(1,1/\chi)$$

$$\pi_{i}^{a}\pi_{ij}^{(n)} = \pi_{j}^{a}\pi_{ji}^{(n)}$$

State i

State j

Approximation Potential 3. Analysis of Detailed Balance

O Formulate acceptance criterion to satisfy detailed balance for the real potential

$$\pi_{i}\pi_{ij}^{(n)}\min(1,\chi) = \pi_{j}\pi_{ji}^{(n)}\min(1,1/\chi)$$
$$\pi_{i}\left(\frac{\pi_{j}^{a}}{\pi_{i}^{a}}\pi_{ji}^{(n)}\right)\min(1,\chi) = \pi_{j}\pi_{ji}^{(n)}\min(1,1/\chi)$$

Close to 1 if approximate potential is good description of true potential

State i

State j

Summary

- O Good Monte Carlo keeps the system moving among a wide variety of states
- O At times sampling of wide distribution is not done well
 - many states of comparable probability not easily reached
 - *few states of high probability hard to find and then escape*
- O Biasing the underlying transition probabilities can remedy problem
 - add bias to underlying TPM
 - remove bias in acceptance step so overall TPM is valid

O Examples

- insertion/deletion bias in GCMC
- force bias
- association bias
- using an approximate potential