CE 530 Molecular Simulation

Lecture 10
Simple Biasing Methods

David A. Kofke
Department of Chemical Engineering
SUNY Buffalo
kofke@eng.buffalo.edu

Review

O Monte Carlo simulation

- Markov chain to generate elements of ensemble with proper distribution
O Metropolis algorithm
- relies on microscopic reversibility $\pi_{i} \pi_{i j}=\pi_{j} \pi_{j i}$
- two parts to a Markov step
\rightarrow generate trial move (underlying transition probability matrix)
\rightarrow decide to accept move or keep original state
O Determination of acceptance probabilities
- detailed analysis of forward and reverse moves
- we examined molecule displacement and volume-change trials

Performance Measures

O How do we improve the performance of a MC simulation?

- characterization of performance
- means to improve performance

O Return to our consideration of a general Markov process

- fixed number of well defined states
- fully specified transition-probability matrix
- use our three-state prototype

O Performance measures

- rate of convergence

$$
\Pi \equiv\left(\begin{array}{lll}
\pi_{11} & \pi_{12} & \pi_{13} \\
\pi_{21} & \pi_{22} & \pi_{23} \\
\pi_{31} & \pi_{32} & \pi_{33}
\end{array}\right)
$$

- variance in occupancies

Rate of Convergence 1.

O What is the likely distribution of states after a run of finite length?

- Is it close to the limiting distribution?

$$
\pi_{1}^{(n)}=\pi_{1}^{(0)} \Pi^{n} \equiv\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\
\pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\
\pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)}
\end{array}\right)=\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)}
\end{array}\right)
$$

- We can apply similarity transforms to understand behavior of Π^{n}
\rightarrow eigenvector equation $\Pi \Phi=\Phi \Lambda \Rightarrow \Pi=\Phi \Lambda \Phi^{-1}$
eigenvalue matrix: $\Lambda=\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right) \quad$ eigenvector matrix $\Phi=\left(\left(\phi_{1}\right)\left(\phi_{2}\right)\left(\begin{array}{l}\phi_{3}\end{array}\right)\right)$

Rate of Convergence 1.

O What is the likely distribution of states after a run of finite length?

- Is it close to the limiting distribution?

$$
\pi_{1}^{(n)}=\pi_{1}^{(0)} \Pi^{n} \equiv\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
\pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\
\pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\
\pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)}
\end{array}\right)=\left(\begin{array}{ll}
\pi_{11}^{(n)} & \pi_{12}^{(n)}
\end{array} \pi_{13}^{(n)}\right)
$$

- We can apply similarity transforms to understand behavior of Π^{n}
\rightarrow eigenvector equation $\Pi \Phi=\Phi \Lambda \Rightarrow \Pi=\Phi \Lambda \Phi^{-1}$

$$
\begin{aligned}
\Pi^{n} & =\left(\Phi \Lambda \Phi^{-1}\right)\left(\Phi \Lambda \Phi^{-1}\right) \ldots(\mathrm{n} \text { times }) \ldots \Phi^{-1} \\
& =\Phi \Lambda\left(\Phi^{-1} \Phi\right) \Lambda\left(\Phi^{-1} \Phi\right) \ldots \\
& =\Phi \Lambda^{n} \Phi^{-1} \\
& \\
& \Lambda^{n}=\left(\begin{array}{ccc}
\lambda_{1}^{n} & 0 & 0 \\
0 & \lambda_{2}^{n} & 0 \\
0 & 0 & \lambda_{3}^{n}
\end{array}\right)
\end{aligned}
$$

Rate of Convergence 2.

O Likely distribution after finite run

$$
\begin{aligned}
& \pi_{i}^{(n)}=\pi_{i}^{(0)} \Pi^{n}=\pi_{i}^{(0)} \Phi \Lambda^{n} \Phi^{-1} \\
& \Lambda^{n}=\left(\begin{array}{ccc}
\lambda_{1}^{n} & 0 & 0 \\
0 & \lambda_{2}^{n} & 0 \\
0 & 0 & \lambda_{3}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \lambda_{2}^{n} & 0 \\
0 & 0 & \lambda_{3}^{n}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

O Convergence rate determined by magnitude of other eigenvalues

- very close to unity indicates slow convergence

Occupancy Variance 1.

O Imagine repeating Markov sequence many times $(\mathrm{L} \rightarrow \infty)$, each time taking a fixed number of steps, M

- tabulate histogram for each sequence; $p_{i}^{(k)}=\frac{m_{i}^{(k)}}{M}$
- examine variances in occupancy fraction

$$
\overline{\sigma_{i}^{2}}=\sum_{k=1}^{L}\left(p_{i}^{(k)}-\pi_{i}\right)^{2} \quad \overline{\sigma_{i} \sigma_{j}}=\sum_{k=1}^{L}\left(p_{i}^{(k)}-\pi_{i}\right)\left(p_{j}^{(k)}-\pi_{j}\right)
$$

- through propagation of error, the occupancy (co)variances sum to give the variances in the ensemble averages; e.g. (for a 2-state system)

$$
\sigma_{U}^{2}=U_{1}^{2} \overline{\sigma_{1}^{2}}+U_{2}^{2} \overline{\sigma_{2}^{2}}+2 U_{1} U_{2} \overline{\sigma_{1} \sigma_{2}}
$$

- we would like these to be small

Occupancy Variance 2.

O A formula for the occupancy (co)variance is known

$$
\begin{array}{rll}
M \overline{\sigma_{i}^{2}} & =\pi_{i}^{2}+2 \pi_{i} s_{i i}-1 \quad \text { variance } \\
M \overline{\sigma_{i} \sigma_{j}} & =\pi_{i} \pi_{j}+\pi_{i} s_{i j}+\pi_{j} s_{j i} \quad \text { covariance } \\
& S=(\mathbf{I}-\Pi+\Phi)^{-1}-\Phi
\end{array}
$$

- right-hand sides independent of M
- standard deviation decreases as $1 / \sqrt{M}$

Example Performance Values

Limiting distribution $\pi=\left(\begin{array}{lll}0.25 & 0.5 & 0.25\end{array}\right)$

Inefficient	$\Pi=\left(\begin{array}{lll}0.97 & 0.02 & 0.01 \\ 0.01 & 0.98 & 0.01 \\ 0.01 & 0.02 & 0.97\end{array}\right)$	$\lambda=\left(\begin{array}{lll}1 & 0.96 & 0.96\end{array}\right) \quad \Sigma=\left(\begin{array}{ccc}9.2 & -6.1 & -3.1 \\ -6.1 & 12.2 & -6.1 \\ -3.1 & -6.1 & 9.2\end{array}\right)$
Barker	$\Pi=\left(\begin{array}{lll}0.42 & 0.33 & 0.25 \\ 0.17 & 0.66 & 0.17 \\ 0.25 & 0.33 & 0.42\end{array}\right)$	$\lambda=\left(\begin{array}{lll}1 & 0.33 & 0.17\end{array}\right) \Sigma=\left(\begin{array}{ccc}0.30 & -0.25 & -0.05 \\ -0.25 & 0.50 & -0.25 \\ -0.05 & -0.25 & 0.30\end{array}\right)$
Most efficient	$\Pi=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0\end{array}\right)$	$\lambda=\left(\begin{array}{lll}1 & 0 & -1\end{array}\right) \quad \Sigma=\left(\begin{array}{ccc}0.125 & 0 & -0.125 \\ 0 & 0 & 0 \\ -0.125 & 0 & 0.125\end{array}\right)$
Metropolis	$\Pi=\left(\begin{array}{ccc}0.0 & 0.5 & 0.5 \\ 0.25 & 0.5 & 0.25 \\ 0.5 & 0.5 & 0.0\end{array}\right)$	$\lambda=\left(\begin{array}{lll}1 & 0 & -0.5\end{array}\right) \quad \Sigma=\left(\begin{array}{ccc}0.10 & -0.125 & 0.02 \\ -0.125 & 0.25 & -0.125 \\ 0.02 & -0.125 & 0.10\end{array}\right)$

Example Performance Values

$$
\begin{gathered}
\Pi=\left(\begin{array}{cccc}
0 & 0.99 & 0.01 & 0 \\
0.99 & 0 & 0 & 0.01 \\
0 & 0.01 & 0 & 0.99 \\
0 & 0.01 & 0.99 & 0
\end{array}\right) \quad \begin{array}{l}
\text { Lots of movement } 1 \rightarrow 2 ; 3 \rightarrow 4 \\
\pi=\left(\begin{array}{llll}
0.25 & 0.25 & 0.25 & 0.25
\end{array}\right) \\
\lambda=\left(\begin{array}{llll}
1 & 0.98 & -0.99 & -0.99
\end{array}\right) \\
\Sigma=\left(\begin{array}{cccc}
6.2 & 6.2 & -6.2 & -6.2 \\
6.2 & 6.2 & -6.2 & -6.2 \\
-6.2 & -6.2 & 6.2 & 6.2 \\
-6.2 & -6.2 & 6.2 & 6.2
\end{array}\right)
\end{array} \\
\Sigma \text { Eimiting movement }(1,2) \rightarrow(3,4)
\end{gathered}
$$

Heuristics to Improve Performance

O Keep the system moving

- minimize diagonal elements of probability matrix
- avoid repeated transitions among a few states

○ Typical physical situations where convergence is poor

- large number of equivalent states with poor transitions between regions of them
\rightarrow entangled polymers

- large number of low-probability states and a few high-probability states
\rightarrow low-density associating systems
 probability region

Biasing the Underlying Markov Process

O Detailed balance for trial/acceptance Markov process

- $\pi_{i} \tau_{i j} \min (1, \chi)=\pi_{j} \tau_{j i} \min (1,1 / \chi)$

O Often it happens that τ_{ij} is small while χ is large (or vice-versa)

- even if product is of order unity, $\pi_{i j}$ will be small because of $\min ()$

O The underlying TPM can be adjusted (biased) to enhance movement among states

- bias can be removed in reverse trial probability, or acceptance
- require in general

$$
\chi=\frac{\pi_{j} \tau_{j i}}{\pi_{i} \tau_{i j}}
$$

- ideally, χ will be unity (all trials accepted) even for a "large" change
\rightarrow rarely achieve this level of improvement
- requires coordination of forward and reverse moves

Example: Biased Insertion in GCMC

O Grand-canonical Monte Carlo ($\mu \mathrm{VT}$)

- fluctuations in N require insertion/deletion trials
- at high density, insertions may be rarely accepted
$\rightarrow \tau_{\mathrm{ij}}$ is small for j a state having additional but non-overlapping molecule
- at high chemical potential, limiting distribution strongly favors additional molecules $\pi \propto e^{\beta \mu N}$
$\rightarrow \chi$ is large for $(\mathrm{N}+1)$ state with no overlap
- apply biasing to improve acceptance
- first look at unbiased algorithm

Insertion/Deletion Trial Move 1. Specification

O Gives new configuration of same volume but different number of molecules
O Choose with equal probability:

- insertion trial: add a molecule to a randomly selected position
- deletion trial: remove a randomly selected molecule from the system

O Limiting probability distribution

- grand-canonical ensemble

$$
\pi\left(\mathbf{r}^{N}\right)=\frac{1}{\Xi} \frac{1}{\Lambda^{d N}} e^{-\beta U\left(\mathbf{r}^{N}\right)+\beta \mu N} d \mathbf{r}^{N}
$$

Insertion/Deletion Trial Move 2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	$\begin{aligned} & \text { Forward-step } \\ & \text { trial } \\ & \text { probability } \end{aligned} \quad \frac{1}{2} \times \frac{d \mathbf{r}}{V} \times \min (1, \chi)$
Select insertion trial	1/2	
[select deletion trial]	[1/2]	$\left(\begin{array}{ll} \text { Reverse-step } \\ \text { trial } \\ \text { probability } \end{array} \quad \frac{1}{2} \times \frac{1}{N+1} \times \min \left(1, \frac{1}{\chi}\right)\right.$
Place molecule at $\mathbf{r}_{\mathrm{N}+1}$ [delete molecule $\mathrm{N}+1$]	$\begin{gathered} \mathrm{d} \mathbf{r} / \mathrm{V} \\ {[1 /(\mathrm{N}+1)]} \end{gathered}$	
Accept move [accept move]	$\begin{gathered} \min (1, \chi) \\ {[\min (1,1 / \chi)]} \end{gathered}$	- χ is formulated to satisfy detailed balance

Insertion/Deletion Trial Move 3. Analysis of Detailed Balance

Insertion/Deletion Trial Move 3. Analysis of Detailed Balance

Forward-step
 $\begin{array}{ll}\text { trial } \\ \text { probability }\end{array} \quad \frac{1}{2} \times \frac{d \mathbf{r}}{V} \times \min (1, \chi)$

Reverse-step trial
probability

Detailed balance

$$
\left.\begin{array}{ccc}
\pi_{i} & \pi_{i j} & =\pi_{j} \\
\Xi \frac{\pi_{j i}}{} \\
\Xi \Lambda^{d N} d \mathbf{r}^{N}
\end{array} \frac{1}{2} \times \frac{d \mathbf{r}}{V} \times \min (1, \chi)\right]=\frac{e^{-\beta U^{\text {old }}+\beta \mu N}+\beta \mu(N+1)}{\Xi \Lambda^{d(N+1)}} \mathbf{r}^{N+1}\left[\frac{1}{2} \times \frac{1}{N+1} \times \min \left(1, \frac{1}{\chi}\right)\right] ~ \$
$$

$\begin{aligned} & \text { Limiting } \\ & \text { distribution }\end{aligned}\left(\mathbf{r}^{N}\right)=\frac{1}{\Xi} \frac{1}{\Lambda^{d N}} e^{-\beta U\left(\mathbf{r}^{N}\right)+\beta \mu N} d \mathbf{r}^{N}$

Insertion/Deletion Trial Move 3. Analysis of Detailed Balance

Forward-step $\begin{array}{ll}\text { trial } \\ \text { probability }\end{array} \quad \frac{1}{2} \times \frac{d \mathbf{r}}{V} \times \min (1, \chi)$

Reverse-step trial
probability

$$
\frac{1}{2} \times \frac{1}{N+1} \times \min \left(1, \frac{1}{\chi}\right)
$$

Detailed balance

$$
\begin{array}{ccc}
\pi_{i} & \pi_{i j} & =\pi_{j} \\
Z \Lambda^{2} N
\end{array} \pi_{j i}
$$

Remember

$$
\text { insert: }(\mathrm{N}+1)=\mathrm{N}_{\mathrm{old}}+1
$$

$$
\text { delete: }(\mathrm{N}+1)=\mathrm{N}_{\mathrm{old}}
$$

$$
\begin{aligned}
& \frac{1}{V} e^{-\beta U^{\text {old }}} \chi=\frac{1}{\Lambda(N+1)} e^{-\beta U^{\text {new }}-\beta \mu} \\
& \chi=\frac{V}{\Lambda(N+1)} e^{-\beta\left(U^{\text {new }}-U^{\text {old }}\right)+\beta \mu} \text { Acceptance probability }
\end{aligned}
$$

Biased Insertion/Deletion Trial Move

 1. SpecificationTrial-move algorithm. Choose with equal probability:- Insertion
\rightarrow identify region where insertion will not lead to overlap
\rightarrow let the volume of this region be $\varepsilon \mathrm{V}$
\rightarrow place randomly somewhere in this region
- Deletion
\rightarrow select any molecule and delete it

Biased Insertion/Deletion Trial Move 2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	$\begin{aligned} & \text { Forward-step } \\ & \text { trial } \end{aligned} \frac{1}{2} \times \frac{d \mathbf{r}}{\varepsilon V} \times \min (1, \chi)$
Select insertion trial [select deletion trial]	$\begin{gathered} 1 / 2 \\ {[1 / 2]} \end{gathered}$	
Place molecule at $\mathbf{r}_{\mathrm{N}+1}$ [delete molecule $\mathrm{N}+1$]	$\begin{gathered} \mathrm{dr} /(\varepsilon \mathrm{V}) \\ {[1 /(\mathrm{N}+\mathrm{l})]} \end{gathered}$	$\underbrace{\begin{array}{l} \text { trial } \\ \text { probability } \end{array}} \overline{2}^{\times \times \frac{1}{N+1} \times \min \left(1, \frac{\bar{\chi}}{}\right)}$
Accept move [accept move]	$\begin{gathered} \min (1, \chi) \\ {[\min (1,1 / \chi)]} \end{gathered}$	Only difference from unbiased algorithm

Biased Insertion/Deletion Trial Move 3. Analysis of Detailed Balance

$$
\begin{aligned}
& \text { Detailed balance } \\
& \pi_{i} \quad \pi_{i j} \quad=\pi_{j} \quad \pi_{j i}
\end{aligned}
$$

Remember
insert: $(\mathrm{N}+1)=\mathrm{N}_{\text {old }}+1$
delete: $(\mathrm{N}+1)=\mathrm{N}_{\text {old }}$

$$
\chi=\frac{\varepsilon V}{\Lambda(N+1)} e^{-\beta\left(U^{\text {new }}-U^{\text {old }}\right)+\beta \mu}
$$

Acceptance probability

- ε must be computed even when doing a deletion, since χ depends upon it
\rightarrow for deletion, ε is computed for configuration after molecule is removed
\rightarrow for insertion, ε is computed for configuration before molecule is inserted

Biased Insertion/Deletion Trial Move 4. Comments

O Advantage is gained when ε is small and $e^{\beta \mu}$ is large

- for hard spheres near freezing
$\rightarrow \beta \mu+\ln (V / \Lambda N): 16 \quad$ (difficult to accept deletion without bias)
$\rightarrow \varepsilon: 10^{-7} \quad$ (difficult to find acceptable insertion without bias)
$\rightarrow \chi: 1$

$$
\chi=\varepsilon e^{\beta u} \frac{V}{\Lambda(N+1)} e^{-\beta \Delta U}
$$

O Identifying and characterizing (computing ε) the non-overlap region may be difficult

Force-Bias Trial Move 1. Specification

O Move atom in preferentially in

 direction of lower energy- select displacement $\delta \mathbf{r}$ in a cubic volume centered on present position
- within this region, select with probability

$$
p(\delta \mathbf{r})=\frac{\exp [+\lambda \beta \mathbf{f} \cdot \delta \mathbf{r}]}{C(\mathbf{f})}=\frac{e^{\lambda \beta f_{x} \delta r r_{y}} e^{\lambda \beta f_{y} \delta r_{y}}}{c_{x} c_{y}} \quad \text { Favors } \delta r_{y} \text { in same direction as } \mathrm{f}_{y}
$$

- $C=c_{x} c_{y}$ is a normalization
constant

$$
c_{x}=\int_{-\delta r_{\max }}^{+\delta r_{\max }} e^{\lambda \beta f_{x} \delta r_{x}} d\left(\delta r_{x}\right)=\frac{\sinh \left(\lambda \beta f_{x} \delta r_{\max }\right)}{\lambda \beta f_{x}}
$$

An Aside: Sampling from a Distribution

O Rejection method for sampling from a complex distribution $\mathrm{p}(\mathrm{x})$

- write $p(x)=C a(x) b(x)$
$\rightarrow a(x)$ is a simpler distribution
$\rightarrow \mathrm{b}(\mathrm{x})$ lies between zero and unity
- recipe
\rightarrow generate a uniform random variate U on $(0,1)$
\rightarrow generate a variate X on the distribution $\mathrm{a}(\mathrm{x})$
\rightarrow if $U<\mathrm{b}(\mathrm{X})$ then keep X
\rightarrow if not, try again with a new U and X
O We wish to sample from $\mathrm{p}(\mathrm{x})=\mathrm{e}^{\mathrm{qx}}$ for $\mathrm{x}=(-\delta,+\delta)$
- we know how to sample on $e^{q(x-x)}$ for $\mathrm{x}=\left(\mathrm{x}_{0}, \infty\right)$
$\rightarrow x=x_{0}-q \ln [U(0,1)]$
- use rejection method with
$\rightarrow \mathrm{a}(\mathrm{x})=\mathrm{e}^{\mathrm{q}(\mathrm{x}-\delta)}$
$\rightarrow \mathrm{b}(\mathrm{x})=0$ for $\mathrm{x}<-\delta$ or $\mathrm{x}>+\delta ; 1$ otherwise
- i.e., sample on $\mathrm{a}(\mathrm{x})$ and reject values outside desired range

Force-Bias Trial Move 2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	$\begin{aligned} & \text { Forward-step }{ }_{\text {trial }}^{\text {told }}(\delta \mathbf{r}) d \mathbf{r} \\ & \text { probability } \end{aligned} \frac{\min (1, \chi)}{}$
Select molecule k [select molecule k]	$\begin{gathered} 1 / \mathrm{N} \\ {[1 / \mathrm{N}]} \end{gathered}$	
Move to $\mathbf{r}^{\text {new }}$ [move back to $\mathbf{r}^{\text {old }}$]	$\begin{gathered} \mathrm{p}^{\text {old }}(\delta \mathbf{r}) \\ {\left[\mathrm{p}^{\text {new }}(-\delta \mathbf{r})\right]} \end{gathered}$	$\begin{array}{ll}\begin{array}{l}\text { trial } \\ \text { probability }\end{array} & N\end{array}$
Accept move [accept move]	$\begin{gathered} \min (1, \chi) \\ {[\min (1,1 / \chi)]} \end{gathered}$	

Force-Bias Trial Move 3. Analysis of Detailed Balance

$\begin{aligned} & \text { Forward-step } \\ & \text { trial } \\ & \text { probability }\end{aligned}$ $\frac{p^{\text {old }}(\delta \mathbf{r}) d \mathbf{r}}{N} \times \min (1, \chi)$,

$\begin{aligned} & \begin{array}{l}\text { Reverse-step } \\ \text { trial } \\ \text { probability }\end{array}\end{aligned} \frac{p^{\text {new }}(-\delta \mathbf{r}) d \mathbf{r}}{N} \times \min \left(1, \frac{1}{\chi}\right)$

$$
p(\delta \mathbf{r})=\frac{\exp [+\lambda \beta \mathbf{f} \cdot \delta \mathbf{r}]}{C(\mathbf{f})}=\frac{e^{\lambda \beta f_{x} \delta r_{x}} e^{\lambda \beta f_{y} \delta r_{y}}}{c_{x} c_{y}}
$$

$$
\left.\begin{array}{rl}
\text { Detailed balance } \\
& =\pi_{j} \\
\pi_{i} \quad \pi_{i j} & e^{-\beta U^{\text {old }}} d \mathbf{r}^{N} \\
Z_{N}
\end{array} \frac{1}{N} \times \frac{e^{+\lambda \beta \mathbf{f o}^{\text {old }} \cdot \delta \mathbf{r}}}{C\left(\mathbf{f}^{\text {old }}\right)} \times \min (1, \chi)\right]=\frac{e^{-\beta U^{n e w}} d \mathbf{r}^{N}}{Z_{N}}\left[\frac{1}{N} \times \frac{e^{-\lambda \beta \mathbf{f}^{n e w} \cdot \delta \mathbf{r}}}{C\left(\mathbf{f}^{n e w}\right)} \times \min \left(1, \frac{1}{\chi}\right)\right] .
$$

$$
\left.\begin{array}{l}
\text { Limiting } \\
\text { distribution }
\end{array} \mathbf{r}^{N}\right) d \mathbf{r}^{N}=\frac{1}{Z_{N}} e^{-\beta U\left(\mathbf{r}^{N}\right)} d \mathbf{r}^{N}
$$

Force-Bias Trial Move 3. Analysis of Detailed Balance

\section*{| $\begin{array}{l}\text { Forward-step } \\ \text { trial } \\ \text { probability }\end{array}$ |
| :--- |
| $\frac{p^{\text {old }}(\delta \mathbf{r}) d \mathbf{r}}{N} \times \min (1, \chi)$ |}

$$
p(\delta \mathbf{r})=\frac{\exp [+\lambda \beta \mathbf{f} \cdot \delta \mathbf{r}]}{C(\mathbf{f})}=\frac{e^{\lambda \beta f_{x} \delta r_{x}} e^{\lambda \beta f_{y} \delta r_{y}}}{c_{x} c_{y}}
$$

$$
\begin{aligned}
& \text { Detailed balance } \\
& \pi_{i} \quad \pi_{i j} \quad=\pi_{j} \quad \pi_{j i} \\
& \frac{e^{-\beta U^{o l d}} d \mathbf{r}^{\langle\delta}}{\not Z_{N}^{\prime}}\left[\frac{1}{\not 2} \times \frac{e^{+\lambda \beta \mathbf{f o}^{\text {old }} \cdot \delta \mathbf{r}}}{C\left(\mathbf{f}^{\text {old }}\right)} \times \min (1, \chi)\right]=\frac{e^{-\beta U^{n e w}} d \mathbf{r}^{N}}{\not /{ }_{N}}\left[\frac{1}{N} \times \frac{e^{-\lambda \beta \mathbf{f}^{n e w} \cdot \delta \mathbf{r}}}{C\left(\mathbf{f}^{n e w}\right)} \times \min \left(1, \frac{1}{\chi}\right)\right] \\
& \frac{1}{C\left(\mathbf{f}^{\text {old }}\right)} e^{-\beta U^{\text {old }}+\lambda \beta \mathbf{f}^{\text {old }} \cdot \delta \mathbf{r}} \chi=\frac{1}{C\left(\mathbf{f}^{\text {new }}\right)} e^{-\beta U^{\text {new }}-\lambda \beta \mathbf{f}^{\text {new }} \cdot \delta \mathbf{r}} \\
& \chi=\frac{C\left(\mathbf{f}^{\text {old }}\right)}{C\left(\mathbf{f}^{\text {new }}\right)} e^{-\beta\left(U^{\text {new }}-U^{\text {old }}\right)-\lambda \beta\left(\mathrm{f}^{\text {new }}+\mathrm{f}^{\text {old }}\right) \cdot \delta \mathrm{r}} \\
& \text { Acceptance probability }
\end{aligned}
$$

Force-Bias Trial Move 4. Comments

O Necessary to compute force both before and after move

$$
\chi=\frac{C\left(\mathrm{f}^{\text {old }}\right)}{C\left(\mathrm{f}^{\text {new }}\right)} e^{-\beta\left(U^{\text {new }}-U^{\text {old }}\right)-\lambda \beta\left(\mathrm{f}^{\text {new }}+\mathrm{f}^{\text {old }}\right) \cdot \delta \mathrm{r}}
$$

O From definition of force $\mathbf{f}=-\nabla U$

- $U^{\text {new }} \approx U^{\text {old }}-\frac{1}{2}\left(\mathbf{f}^{\text {new }}+\mathbf{f}^{\text {old }}\right) \cdot \delta \mathbf{r}$
- $\lambda=1 / 2$ makes argument of exponent nearly zero
- $\lambda=0$ reduces to unbiased case

O Force-bias makes Monte Carlo more like molecular dynamics

- example of hybrid MC/MD method

O Improvement in convergence by factor or 2-3 observed

- worth the effort?

Association-Bias Trial Move 1. Specification

O Low-density, strongly attracting molecules

- when together, form strong associations that take long to break
- when apart, are slow to find each other to form associations
- performance of simulation is a problem

O Perform moves that put one molecule preferentially in vicinity of another

- suffer overlaps, maybe 50% of time
- compare to problem of finding associate only 1 time in (say) 1000

Association-Bias Trial Move 1. Specification

O With equal probability, choose a move:

- Association
\rightarrow select a molecule that is not associated
\rightarrow select another molecule (associated or not)
\rightarrow put first molecule in volume eV in vicinity of second
- Dis-association
\rightarrow select a molecule that is associated
\rightarrow move it to a random position anywhere in the system

Association-Bias Trial Move 2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event [reverse event]	Probability [reverse probability]	Forward-step $\underset{\text { trial }}{\text { probability }}, \frac{1}{N_{u} N_{a} \varepsilon V} \times \min (1, \chi)$
Select molecule k [select molecule k]	$\begin{gathered} 1 / \mathrm{N}_{\mathrm{un}} \\ {\left[1 /\left(\mathrm{N}_{\mathrm{assoc}}+1\right)\right]} \end{gathered}$	
Move to $\mathbf{r}^{\text {new }}$ [move back to $\mathbf{r}^{\text {old }}$]	$\begin{gathered} 1 /\left(\mathrm{N}_{\text {assoc }} \mathrm{V} \mathrm{~V}\right)\left({ }^{*}\right) \\ {[1 / \mathrm{V}]} \end{gathered}$	$\underbrace{\begin{array}{l}\text { trial } \\ \text { probability }\end{array}} \overline{\left(N_{a}+1\right) V} \times \min \left(1, \frac{1}{\chi}\right)$
Accept move [accept move]	$\begin{gathered} \min (1, \chi) \\ {[\min (1,1 / \chi)]} \end{gathered}$	(*) incorrect

Association-Bias Trial Move 3. Analysis of Detailed Balance

Forward-step
 $\begin{array}{ll}\text { trial } \\ \text { probability }\end{array} \quad \frac{1}{N_{u} N_{a} \varepsilon V} \times \min (1, \chi)$

Reverse-step trial
probability

$$
\frac{1}{\left(N_{a}+1\right) V} \times \min \left(1, \frac{1}{\chi}\right)
$$

Detailed balance

$$
\begin{gathered}
\pi_{i} \quad \pi_{i j} \\
\frac{e^{-\beta U^{o l d}} d \mathbf{r}^{N}}{Z_{N}}\left[\frac{1}{N_{u} N_{a} \varepsilon V^{\prime}} \times \min (1, \chi)\right]=\frac{\pi_{j i}}{Z_{N}} d \mathbf{r}^{N}\left[\frac{1}{\left(N_{a}+1\right) V^{n e w}} \times \min \left(1, \frac{1}{\chi}\right)\right]
\end{gathered}
$$

$$
\chi=\frac{N_{a}}{\left(N_{a}+1\right)} N_{u} \varepsilon e^{-\beta\left(U^{n e w}-U^{\text {old }}\right)}
$$

Acceptance probability

Association-Bias Trial Move

4. Comments

O This is incorrect!
$\chi=\frac{N_{a}}{N_{a}+1} N_{u} \varepsilon e^{-\beta\left(U^{\text {new }}-U^{\text {old }}\right)}$

O Need to account for full probability of positioning in $\mathbf{r}^{\text {new }}$

This region has extra probability of being selected (in vicinity of two molecules)

- must look in local environment of trial position to see if it lies also in the neighborhood of other atoms
\rightarrow add a $1 / \varepsilon V$ for each atom
O Algorithm requires to identify or keep track of number of associated/unassociated molecules

Using an Approximation Potential 1. Specification

O Evaluating the potential energy is the most time-consuming part of a simulation
O Some potentials are especially time-consuming, e.g.

- three-body potentials
- Ewald sum

O Idea:

- move system through Markov chain using an approximation to the real potential (cheaper to compute)
- at intervals, accept or reject entire subchain using correct potential

True potential
Approximate
True potential

Approximation Potential 2. Analysis of Trial Probabilities

○ What are π_{ij} and π_{ji} ?

O Given that each elementary Markov step obeys detailed balance for the approximate potential...

- ...one can show that the "super-step" $\mathrm{i} \rightarrow \mathrm{j}$ also obeys detailed balance (for the approximate potential)
- $\pi_{i}^{a} \pi_{i j}^{(n)}=\pi_{j}^{a} \pi_{j i}^{(n)}$
- very hard to analyze without this result
\rightarrow would have to consider all paths from i to j to get transition probability

Approximation Potential 3. Analysis of Detailed Balance

O Formulate acceptance criterion to satisfy detailed balance for the real potential

$$
\begin{array}{cc}
\pi_{i} \pi_{i j}^{(n)} \min (1, \chi)=\pi_{j} \pi_{j i}^{(n)} \min (1,1 / \chi) & \begin{array}{c}
\text { Approximate-potential } \\
\text { detailed balance }
\end{array} \\
\pi_{i}\left(\frac{\pi_{j}^{a}}{\pi_{i}^{a}} \pi_{j i}^{(n)}\right) \min (1, \chi)=\pi_{j} \pi_{j i}^{(n)} \min (1,1 / \chi) & \pi_{i}^{a} \pi_{i j}^{(n)}=\pi_{j}^{a} \pi_{j i}^{(n)}
\end{array}
$$

Approximation Potential 3. Analysis of Detailed Balance

O Formulate acceptance criterion to satisfy detailed balance for the real potential

$$
\begin{aligned}
\pi_{i} \pi_{i j}^{(n)} \min (1, \chi)=\pi_{j} \pi_{j i}^{(n)} \min (1,1 / \chi) & \begin{array}{c}
\text { Approximate-potential } \\
\text { detailed balance }
\end{array} \\
\pi_{i}\left(\frac{\pi_{j}^{a}}{\pi_{i}^{a}} \pi_{j i}^{(n)}\right) \min (1, \chi)=\pi_{j} \pi_{j i}^{(n)} \min (1,1 / \chi) & \pi_{i}^{a} \pi_{i j}^{(n)}=\pi_{j}^{a} \pi_{j i}^{(n)}
\end{aligned}
$$

Approximation Potential 3. Analysis of Detailed Balance

O Formulate acceptance criterion to satisfy detailed balance for the real potential

$$
\begin{aligned}
& \pi_{i} \pi_{i j}^{(n)} \min (1, \chi)=\pi_{j} \pi_{j i}^{(n)} \min (1,1 / \chi) \\
& \pi_{i}\left(\frac{\pi_{j}^{a}}{\pi_{i}^{a}} \pi_{j i}^{(/ n)}\right) \min (1, \chi)=\pi_{j} \pi_{j i}^{(n)} \min (1,1 / \chi) \\
& \chi=\frac{\pi_{j}}{\pi_{j}^{a}} \times \frac{\pi_{i}^{a}}{\pi_{i}} \quad \begin{array}{l}
\text { Close to } 1 \text { if approximate potential is good } \\
\text { description of true potential }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { State i } \\
& \text { State } \mathrm{j}
\end{aligned}
$$

Summary

O Good Monte Carlo keeps the system moving among a wide variety of states
O At times sampling of wide distribution is not done well

- many states of comparable probability not easily reached
- few states of high probability hard to find and then escape

O Biasing the underlying transition probabilities can remedy problem

- add bias to underlying TPM
- remove bias in acceptance step so overall TPM is valid

O Examples

- insertion/deletion bias in GCMC
- force bias
- association bias
- using an approximate potential

