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Abstract—We investigate the resilience of cyber physi-
cal systems by modeling the interaction between provider
and attacker as a simultaneous game that incorporates
cyber and physical spaces. Both the provider and at-
tacker aim to maximize their individual utility, which
is determined by a trade-off between target revenue
and investment cost. The system resilience function is
formulated as a power-form product of the survival
probabilities of cyber and physical spaces, each with a
corresponding correlation coefficient. The contest success
functions based on the reinforcement and attack levels are
used to estimate the survival probabilities of cyber and
physical spaces. We present the provider strategies based
on the Nash equilibrium of the game, and analyze the
sensitivities with respect to cyber and physical correlation
coefficients, target revenues and costs. The results show
that these correlation coefficients affect the cyber and
physical reinforcement strategies, and also provide new
insights into the system resilience.

I. INTRODUCTION

A Cyber-Physical System (CPS) typically represents
a close coupling and coordination between its cyber and
physical spaces as indicated in several applications, such
as critical infrastructures of power systems, network
infrastructures, and smart grids; oil and gas distribution;
medical-devices; and robotics. In particular, the Super-
visory Control and Data Acquisition (SCADA) systems
combined with communications networks are expected
to increase the efficiency and reliability of energy gen-
eration and storage through smart grid technologies.
While the information technology and communication
layer within a CPS provides the critical computing
and communication capabilities, it also poses new
challenges to its operation and security. Furthermore,
the heterogeneity and interactions between cyber and
physical spaces make the modeling of CPS particularly
challenging, and indeed might require a new science
and technology foundation that is model based, precise
and predictable, as pointed out in [7].

Game theory is a relatively new analysis and design
tool that is applied in the study of CPS security and
reliability, for example, the development of Stackelberg,
Markov, and simultaneous games between defender and
attacker [1], [2]. The research area of cyber-physical in-
terdependence is still under development; a recent study
investigates the cascading failure of an interconnected
cyber-physical network by analyzing node failure modes
and network topology dynamics [8]. In this paper, we

develop a game theory approach to investigate the cyber-
physical interdependence and resilience of CPS.

We incorporate cyber and physical correlations into
a game formulation, where the provider and attacker
have a complete information about each other’s strategy
and payoff. We use (i) a power-form product of survival
probabilities of cyber and physical spaces, each with
a corresponding correlation coefficient, to characterize
the system resilience, and (ii) contest success functions
based on the reinforcement and attack levels to estimate
the survival probabilities of cyber and physical spaces.
We present the Nash Equilibrium (NE) solutions of
the game, and analyze their sensitivities to cyber and
physical correlation coefficients, target revenues, and
costs. The results show that the correlation coefficients
can lead to both monotonic and non-monotonic de-
pendencies between cyber and physical reinforcement
and attack efforts. The overall results suggest that the
provider can maximize the payoff by utilizing the cor-
relation coefficients and adapting the target revenues,
costs and deployment strategies.

We introduce the CPS resilience function in Sec-
tion II-A. In Section II-B, we evaluate the survival
probabilities of cyber and physical spaces using the
contest success functions. The utility fucntions of the
provider and attacker are formulated in Sections III and
IV, respectively. Section V presents NE analysis of the
simultaneous game, and Section VI shows a cloud com-
puting infrastructure example and its resilience analysis.
Finally, Section VII concludes with implications and
future research directions.

II. THE SYSTEM RESILIENCE

The survival of a CPS is determined by both cyber
and physical spaces, and the failure of either one leads
to its breakdown. Furthermore, the degradation of one
affects the survival of other, and they jointly determine
the CPS resilience, namely, the survivability under
attacks. The Cobb-Douglas functional form of produc-
tion [3] formulates the relationship of a single output
based on two inputs. We utilize this characterization to
formulate the resilience function of CPS in terms of
the survival probabilities of cyber and physical spaces
(Section II-A). The individual survival probabilities of
cyber and physical spaces themselves are estimated by
the reinforcement and attack levels using the contest
success function [6] in Section II-B. Let Pc(xc, yc),



TABLE I. NOTATION THAT IS USED IN THIS PAPER

Notation Explanation

Parameters:
i = c, p Cyber and physical space

ξc, ξp > 0 The inherent defense in cyber,
and physical space, respectively

Pc(xc, xp, yc, yp) Cyber survival probability

Pp(xc, xp, yc, yp) Physical survival probability

Fcp(xc, xp, yc, yp) Cyber-physical system
resilience

gD ≥ 0 Provider’s target revenue

gA ≥ 0 Attacker’s target revenue

cDc ≥ 0 Unit cost of cyber defense

cDp ≥ 0 Unit cost of physical defense

cAc ≥ 0 Unit cost of cyber attack

cAp ≥ 0 Unit cost of physical attack

ac > 0 Cyber-correlation coefficient

ap > 0 Physical-correlation coefficient

Decision variables:
xi Provider’s reinforcement in

space i
yi Attacker’s attack in space i
Utilities:
UD(xc, xp, yc, yp) Defender’s utility

UA(xc, xp, yc, yp) Attacker’s utility

Pp(xp, yp) denote the survival probabilities of cyber
and physical spaces, respectively, where xc and xp are
the reinforcement levels of cyber and physical spaces,
respectively, by the provider; and yc and yp are the
attack levels of cyber and physical spaces, respectively.
Table I shows the notations used in this paper.

A. CPS Resilience Function

We consider the CPS resilience function given by

Fcp = Pc(xc, yc)
acPp(xp, yp)

ap (1)

where ac, ap ≥ 0 are cyber and physical corre-
lation coefficients, respectively. This CPS resilience
function is a measure of its survivability in that it
increases with both Pc(.) and Pp(.), and is closely
related to CPS survival probability; indeed, under sta-
tistical independence the survival probability equals to
Fcp = Pc(xc, yc)Pp(xp, yp), where both correlation
coefficients are 1. Deviations of cyber and physical
correlation coefficients from 1 represent different levels
and types of cyber-physical correlations, as discussed in
the following. We assume Fcp(xc, xp, yc, yp) is continu-
ously differentiable and Pp, Pc > 0. The effect of cyber

correlation coefficient shows that
∂Fcp

∂ac
= Fcp lnPc < 0,

∂2Fcp

∂ac
2 = Pc

acPp
ap (lnPc)

2
> 0; and similarly, the

effect of physical correlation coefficient shows that
∂Fcp

∂ap
= Fcp lnPp < 0,

∂2Fcp

∂ap
2 = Pc

acPp
ap (lnPp)

2
> 0.

Thus, CPS resilience function is convex and decreasing
in cyber and physical correlation coefficients. We now
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Fig. 1. Isoquants of Fcp = Pc
acPp

ap , given (a) Pc = 0.5, Pp =
0.5; (b) ac = 0.1, ap = 0.1; (c) ac = 0.2, ap = 8; (d) ac = 8, ap = 8

consider the marginal survivability of cyber space, that

is
∂Fcp

∂Pc
= acPp

apPc
ac−1 ≥ 0, and

∂2Fcp

∂Pc
2 =

ac(ac − 1)Pp
apPc

ac−2

⎧⎪⎨
⎪⎩

< 0 if 0 ≤ ac < 1

= 0 if ac = 1

> 0 if ac > 1

(2)

Thus, CPS resilience function increases in Pc and Pp,
and the rate of increase can be positive, zero or negative,
depending on the value of ac and ap. Figures 1(a);
(b), (c), and (d) show the isoquants when {ac, ap}, and
{Pc, Pp} vary, respectively. There is a complementary
effect between the cyber and physical spaces when ac
and ap are relatively small, and a substitution effect
when ac and ap are large. When ac is relatively low
and ap is relatively large, (for example, ac = 0.2
and ap = 8 in Figure 1 (c)), an increase in cyber
survival probability, Pc, can effectively increase CPS
survivability when Pc is small. When the cyber and
physical survival probabilities are equivalently large,
although the cyber space is less correlated, increasing
Pp leads to a higher Fcp. In general, investing in the less
correlated space creates a higher Fcp when the survival
probability of that space is relatively low. However,
investing in the more correlated space generates a higher
Fcp when the survival probabilities of both spaces are
relatively high. It implies that, in order to improve the
resilience of CPS, we need focus on the individual
survival probabilities first, and then on their correlation
coefficients. When ac and ap are too large, cyber and
physical spaces can completely substitute each other
(Figure 1 (d)), and the system is almost down since
limac,ap

→+∞
Fcp = 0. Thus, CPS performs poorly when

cyber and physical spaces are highly correlated even if
their individual survival probabilities are high.

B. Contest Success Function

The contest success function [5], [6] evaluates the
winning probability of each agent (such as provider
and attacker) based on the efforts devoted to a contest
or conflict. Different forms of contest functions have
been applied to applications, such as the ratio and
difference forms. We assume that a CPS has inherent
cyber and physical-defense levels, denoted by ξc and
ξp, respectively, that counter attacks, and xc and xp

provide additional reinforcements against the attacks.
Then, the survival probability of cyber (physical) space
is determined by the percentage of defense effort versus
the efforts from both sides in a ratio, or difference form,
as shown in Equations (3), and (4), respectively. More
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details about contest success functions are found in [4],
[5].

Pc(xc, yc) =
ξc + xc

ξc + xc + yc
,

Pp(xp, yp) =
ξp + xp

ξp + xp + yp
(3)

Pc(xc, yc) =
eξc + exc

eξc + exc + eyc
,

Pp(xp, yp) =
eξp + exp

eξp + exp + eyp
(4)

We use Equation (3) for the model set-up and analysis
in Sections III, IV, and V; and Equation (4) for the
example illustration in Section VI.

III. PROVIDER UTILITY FUNCTION

We introduce the utility function of the provider
first, then develop and analyze the best response from
a game-theoretic perspective.

A. The Model

The utility function of the provider is determined
by the target revenue and the defense cost [2]. The
provider’s actual revenue is discounted by the CPS
resilience function Fcp, which is determined by the
defense and attack efforts. So we have the provider’s
utility UD(xc, xp, yc, yp) as follows.

UD = Fcp(xc, xp, yc, yp)gD − cDcxc − cDpxp (5)

where gD is the provider’s target revenue. cDc, and cDp

are the unit defense cost in cyber and physical space,
respectively.

B. Provider’s Best Response

The provider’s best response is the defense effort in
cyber and physical spaces that she would exert in order
to maximize her utility, given certain attack efforts.

Definition 1. We call the strategy {x̂c, x̂p}(yc, yp) the
best response of defender to attacker’s attack strategy
(yc, yp) if

{x̂c, x̂p}(yc, yp) = argmax
xc≥0,xp≥0

UD(xc, xp, yc, yp),

∀xc, xp ∈ R (6)

In the following, we analyze the provider’s best
response when the reinforcement and attack efforts
(xc, xp, yc, yp) are continuous and discrete variables,
respectively.

1) General Case: When (xc, xp, yc, yp) are all con-
tinuous variables we have the analytical form of best

response as follows. ∂UD

∂xc
=

∂Fcp

∂xc
gD − cDc = 0,

and ∂UD

∂xp
=

∂Fcp

∂xp
gD − cDp = 0. Considering the

functional form as showed in Equation (3), we have

the CPS resilience Fcp = cDc

acgD

(
(x̂c+ξc)

2

yc
+ x̂c + ξc

)
=

cDp

apgD

(
(x̂p+ξp)

2

yp
+ x̂p + ξp

)
. The defender’s best re-

sponse implies that a higher system resilience needs a
higher unit defense cost, a lower cyber and physical
correlation coefficients, a lower target revenue, higher
inherent cyber and physical levels, higher cyber and
physical reinforcement efforts, and a lower attack effort.

We also have
(x̂c+ξc)(x̂c+ξc+yc)
(x̂p+ξp)(x̂p+ξp+yp)

=
accDpyc

apcDcyp
. It indicates

that the best response of cyber defense increases in the
unit physical defense cost, the inherent physical defense
level, the cyber correlation coefficient, the cyber attack
level; and decreases in the unit cyber defense cost, the
inherent cyber defense level, the physical correlation
coefficient, and the physical attack.

2) Discrete Case: Considering the defense and at-
tack efforts as the number of units being reinforced
and attacked, we have xc, yc = 0, 1, 2, · · · , nc;xp, yp =
0, 1, 2, · · · , np. Figures 2 and 3 show the provider’s best
response contours x̂c(yc, yp) and x̂p(yc, yp) vary w.r.t.
the correlation coefficients ac and ap, respectively. We

0 10
2001020

0
20
40

yp

(a)Baseline x̂c

yc
yp

y c

(b)Baseline

14102
0 5 10 15
0
5
10
15

yp

y c

(c)ac =0.5

10

5
1

0 5 10 15
0
5
10
15

yp

y c

(d)ap =0.5

1282
0 5 10 15
0
5
10
15

yp

y c

(e)ac =5

14

2

0 5 10 15
0

5

yp

y c

(f)ap =5

14

2

0 5
0
5
10
15

yp

y c

(g)ac =0.5, ap =0.5

9

1 5
0 5 10 15
0
5
10
15

yp

y c

(h)ac =5, ap =5

14
2

0 5
0

5

Fig. 2. The provider’s best response in cyber space with baseline
values: ac = 1, ap = 1, cDA = 0.05, cDP = 0.05, gD = 5, ξc =
0.5, ξp = 0.5
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Fig. 3. The provider’s best response in physical space with baseline
values: ac = 1, ap = 1, cDA = 0.05, cDP = 0.05, gD = 5, ξc =
0.5, ξp = 0.5

now observe some phenomena that are not obvious in
the general case above. The provider’s best response
effort shrinks to a smaller area with higher gradient
when ac and ap increases (Figures 2(g) and 3(g));
expands with lower gradient when ac and ap decreases
(Figures 2(h) and 3(h)). x̂c decreases when ac decreases
(Figure 2(c)), increases when ac increases (Figure 2(d)),
which has the same trend as the general case discussed
in Section III-B1. When ac increases x̂c shrinks to
a smaller range w.r.t. the cyber attack effort yp with
higher gradient (Figure 2(e)). When ap increases x̂c
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shrinks to a smaller range w.r.t. the physical attack
effort yp with higher gradient (Figure 2(f)). So, when
the cyber correlation coefficient ac increases, the best
cyber-defense effort increases w.r.t. lower cyber attack,
but decreases w.r.t. higher cyber attack. In other words,
when the cyber-space is more correlated to the CPS,
the defender would exert more cyber-defense effort
when the cyber-attack level is relatively low, but would
decrease the effort when cyber-attack effort is relatively
high.

IV. ATTACKER UTILITY FUNCTION

The utility function of the attacker is determined by
his target revenue, the probability of CPS breakdown,
and the attack costs in cyber and physical spaces.

A. The Model

Similar to the utility function of the provider, we
have the utility function of the attacker as below.

UA = (1− Fcp(xc, xp, yc, yp))gA − cAcyc − cApyp (7)

where gA is the the attacker’s target revenue. cAc, and
cAp are the unit attack costs in cyber and physical
spaces, respectively.

B. Attacker’s Best Response

First, we present the concept of attacker’s best
response, then show the best responses when decision
variables are continuous and discrete, respectively.

Definition 2. We call the strategy {ŷc, ŷp} the best
response of attacker to defender’s defense strategy
(xc, xp) if

{ŷc, ŷp}(xc, xp) = argmax
yc≥0,yp≥0

UA(xc, xp, yc, yp),

∀yc, yp ∈ R (8)

1) General Case: Based on the attackers utility
function, the attackers best response satisfies: ∂UA

∂yc
=

−∂Fcp

∂yc
gA − cAc = 0, and ∂UA

∂yp
= −∂Fcp

∂yp
gA −

cAp = 0. Using the functional form as showed in
Equation (3), we have Fcp = cAc

acgA
(ŷc + xc + ξc) =

cAp

apgA
(ŷp + xp + ξp). We also have another form about

the attacker’s best response. ŷc+xc+ξc
ŷp+xp+ξp

=
accAp

apcAc
. It

implies that the attacker’s best response in cyber space
increases in the unit cost of physical-space attack, the
cyber correlation coefficient, and the physical-space
defense effort; decreases in the unit cost of cyber-space
attack, the physical-space correlation coefficient, and the
cyber-space defense effort.

2) Discrete Case: Considering the attack
and defense efforts as integers, i.e., xc, yc =
0, 1, 2, · · · , nc;xp, yp = 0, 1, 2, · · · , np, Figures 4
and 5 show the provider’s best response contours x̂c

and x̂p change w.r.t. the cyber- and physical correlation
coefficients ac and ap, respectively. We notice that
ŷc decreases when ac, or ap decreases, and increases

when ac, or ap increases. In other words, the best
response of cyber-attack increases when the cyber and
physical spaces are more correlated.
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V. NE OF SIMULTANEOUS GAME

In this section, we consider a simultaneous game
in which the provider and the attacker move at the
same time. The provider and the attacker decide on
defense and attack efforts in cyber and physical spaces,

respectively. Notice that ∂2UD

∂xc
2 < 0, and ∂2UD

∂xp
2 < 0,

when ac < 1 + 2(xc+ξc)
yc

, and ap < 1 +
2(xp+ξp)

yp
,

∂2UA

∂yc
2 < 0, and ∂2UA

∂yp
2 < 0, which ensure the existence

of optimal solution to Equations (6) and (8).

Definition 3. We call a collection of strategy
(x∗

c , x
∗
p, y

∗
c , y

∗
p) a pure Nash equilibrium, or “equilib-

rium”, if and only if both Equations (9) and (10) are
satisfied:

UD(x∗
c , x

∗
p, y

∗
c , y

∗
p) ≥ UD(xc, xp, y

∗
c , y

∗
p), ∀xc, yc (9)

UA(x
∗
c , x

∗
p, y

∗
c , y

∗
p) ≥ UA(x

∗
c , x

∗
p, yc, yp), ∀yc, yc (10)

A. General Case

Based on the provider’s and attacker’s best responses
(Equations (6) and (8)), we have {xc

∗, xp
∗, yc∗, zp∗} as

4



follows.

xc
∗ =

FcpacgAgD − ξccDcgA − ξccAcgD
gDcAc + gAcDc

(11)

xp
∗ =

FcpapgAgD − ξpcDpgA − ξpcApgD
gDcAp + gAcDp

(12)

yc
∗ =

cDcFcpacgA
2

cAc(gDcAc + gAcDc)
(13)

yp
∗ =

cDpFcpapgA
2

cAp(gDcAp + gAcDp)
(14)

where Fcp =
(

gDcAc

gDcAc+gAcDc

)ac
(

gDcAp

gDcAp+gAcDp

)ap

Based on the above analytical solution, the CPS re-
silience Fcp increases in the provider’s target revenue
gD, the unit attack costs in cyber space cAc, and
physical spaces cAp; decreases in the cyber correlation
coefficient ac, and physical correlation coefficient ap,
the attacker’s target revenue gA, the unit defense cost in
cyber space cDc, and physical space cDp. Regarding the
cyber reinforcement, xc

∗ increases in cAp and gD; and
decreases in cDc, cDp and ξc. The relations between xc

∗
and other parameters, such as ac, ap, cAc, gA, ξp, are not
monotonic and can be very complicated. For example,
consider the effects of cAc on xc

∗. When the unit cost of
cyber attack increases, the attacker would either keep or
withdraw cyber-attack, which depends on the defender’s
physical reinforcement xp

∗, the unit costs of physical
defense and attack, and the cyber, physical correlation
coefficients. The attacker would decrease the level or
even withdraw cyber attack if he can fully destroy the
physical space by increasing physical attack, consider-
ing his target revenue, the unit cyber attack cost, and the
cyber and physical correlation coefficients. Otherwise,
the attacker would keep attacking the cyber space. The
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cyber reinforcement, xc
∗, first increases then decreases

in the cyber correlation coefficient, ac. This is because,
considering the discounted target revenue, the provider’s
utility increases in the system resilience, Fcp. While Fcp

increases in xc, decreases in ac, the provider’s payoff
increases in xc, and decreases in ac. With increasing
ac, increasing xc can counter the negative effect of ac
and generate more revenue. However, when xc is large,
the cost term, which is a linear function of xc, has a
negative effect to his payoff. So xc

∗ first increases then
decreases in ac.

B. Discrete Case

When the decision variables are allowed to take
discrete values only, we don’t have the closed-form
solution, and hence numerically solve the game model.
Figure 7 shows the NE pure strategies when defense
and attack efforts are integers, for example the number
of targets being reinforced and attacked. We observe
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that the defense efforts in cyber, and physical spaces
first increase then decrease in the cyber and physical
correlation coefficients. We notice that the existence
of NE pure strategy is not guaranteed for the discrete
case. For example, given certain target revenues and
cyber and physical correlation coefficients, the provider
and attacker would have to adjust the costs in cyber
and physical spaces and otherwise they won’t reach an
equilibrium.

VI. CLOUD-COMPUTING EXAMPLE

In this section, we examine the resilience of a
cloud computing infrastructure that is subject to cyber
attacks on servers and routers, and physical attacks on
fiber routes and cooling and power systems. The cloud
computing infrastructure is composed of 100 servers
distributed at five physical sites. The reinforcement and
attack efforts are the number of servers being rein-
forced and attacked. A successful physical attack, such
as the disruption of fibers or gateway routers, makes
all servers unavailable in the cyber space. Given the
predetermined parameters ac, ap, cAc, cAp, v, cDc, cDp,
and V , the defensive reinforcement and the provider’s
utility at NE are obtained based on Equations (9) and
(10). We compare the provider’s utility and the system
resilience at NE, for different deployment scenarios,
cyber and physical correlation coefficients. Table VI
shows the defense and attack efforts at each physical
site, the provider’s utilities, and the system resilience
under three deployment scenarios, namely, (50, 30, 10,
5, 5), (40, 40, 10, 10, 10), and (20, 20, 20, 20, 20). The
difference-form contest function (Equation (4)) is used
here.

The system resilience Fcp
∗, and the provider’s utility

UD
∗ both increase as the correlation coefficients ac and

ap decrease for a given deployment scenario. Uneven
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TABLE II. THE ILLUSTRATION OF THE CLOUD COMPUTING INFRASTRUCTURE WITH DIFFERENT DEPLOYMENTS

Deployment Scenarios xc
∗ xp

∗ zc
∗ zp

∗ UD
∗ Fcp

∗

ac = 1, ap = 2, cAc = 0.1, cAp = 0.1, v = 10, cDc = 0.5, cDp = 0.5, V = 50

(50, 30, 10, 5, 5) (0, 0, 10, 5, 5) (0, 1, 1, 1, 1) (0, 0, 10, 5, 5) (0, 0, 1, 1, 1) 35.96 15.34%

(40, 30, 10, 10, 10) (0, 0, 10, 10, 10) (0, 1, 1, 1, 1) (0, 0, 10, 10, 10) (0, 0, 1, 1, 1) 34.96 15.34%

(20, 20, 20, 20, 20) (3, 3, 3, 3, 3) (1, 1, 1, 1, 1) (3, 3, 3, 3, 3) (1, 1, 1, 1, 1) 29.25 12.5%

ac = 1, ap = 1, cAc = 0.1, cAp = 0.1, v = 10, cDc = 0.5, cDp = 0.5, V = 50

(50, 30, 10, 5, 5) (0, 2, 10, 5, 5) (0, 1, 1, 1, 1) (0, 2, 10, 5, 5) (0, 1, 1, 1, 1) 59.90 25%

(40, 30, 10, 10, 10) (7, 2, 10, 10, 10) (1, 1, 1, 1, 1) (7, 2, 10, 10, 10) (1, 1, 1, 1, 1) 58.10 25%

(20, 20, 20, 20, 20) (20, 20, 20, 20, 20) (1, 1, 1, 1, 1) (20, 20, 20, 20, 20) (1, 1, 1, 1, 1) 52 25%

ac = 0.5, ap = 0.5, cAc = 0.1, cAp = 0.1, v = 10, cDc = 0.5, cDp = 0.5, V = 50

(50, 30, 10, 5, 5) (7, 30, 10, 5, 5) (0, 1, 1, 1, 1) (8, 3, 10, 5, 5) (1, 1, 1, 1, 1) 107.35 45.38%

(40, 30, 10, 10, 10) (40, 30, 10, 10, 10) (1, 1, 1, 1, 1) (40, 30, 10, 10, 10) (1, 1, 1, 1, 1) 114.5 50%

(20, 20, 20, 20, 20) (20, 20, 20, 20, 20) (1, 1, 1, 1, 1) (20, 20, 20, 20, 20) (1, 1, 1, 1, 1) 114.5 50%

allocation of servers at physical sites (50, 30, 10, 5, 5)
may lead to a higher payoff to the provider when the
CPS is statistically independent (ac = 1 and ap = 1)
or has higher correlation coefficients. But, an even
deployment (20, 20, 20, 20, 20) leads to a higher payoff
when the CPS has relatively low correlation coefficients.
Thus, it is important for the provider to adapt the
deployment strategy to the correlation coefficients in
order to maximize the payoff.

VII. CONCLUSION

In this paper, we propose a game theory approach
to explore the correlations between cyber and physical
spaces in CPS. We investigate the system resilience
in terms of the cyber and physical correlation coeffi-
cients, the reinforcement and attack levels and costs,
the defender’s and attacker’s target revenues. We find
that investing on the less correlated space leads to a
higher system resilience when the survival probability
of that space is relatively low. However, investing on
the more correlated space generates a higher system
resilience when the survival probabilities of both spaces
are relatively high. The cyber and physical correlation
coefficients can generate both monotonic and non-
monotonic dependencies between the cyber and physical
reinforcement and attack efforts, which in turn depend
on the relationships between provider’s and attacker’s
target revenues and costs in cyber and physical spaces.
In the cloud-computing example, the cyber and physical
correlation coefficients can significantly affect the CPS
resilience. The provider can obtain a higher payoff
by adapting the deployment strategy to the cyber and
physical correlation coefficients. Overall, by account-
ing for the complex interdependence within CPS, our
preliminary results provide insights into improving the
resilience of CPS.

In the future, we plan to develop more advanced
models by considering the budget limits, and use data
from practical systems to validate models. We are also
interested in investigating real-life CPS applications

that present more complex and realistic cyber-physical
interdependence.

ACKNOWLEDGMENT

This work is funded by the Mathematics of Complex,
Distributed, Interconnected Systems Program, Office of Ad-
vanced Computing Research, U.S. Department of Energy,
and is performed in part at Oak Ridge National Laboratory
managed by UT-Battelle, LLC for U.S. Department of Energy
under Contract No. DE-AC05-00OR22725. This research is
also partially supported by the United States Department of
Homeland Security through the National Center for Risk and
Economic Analysis of Terrorism Events (CREATE) under
award number 2010-ST-061-RE0001.

REFERENCES

[1] He, F. and Zhuang, J. Modeling ‘contracts’ between a terrorist
group and a government in a sequential game. Journal of the
Operational Research Society, 63: 790-809, 2012.

[2] He, F., Zhuang, J., and Rao, N. S. V. Game-theoretic analysis
of attack and defense in cyber-physical network infrastructures.
Proceedings of the Industrial and Systems Engineering Research
Conference, Orlando, FL, May, 2012.

[3] Houthakker, H. S. The Pareto distribution and the Cobb-Douglas
production function in activity analysis. The Review of Economic
Studies, 23(1), 27-31, 1955.

[4] Hwang, S. H. Contest success functions: Theory and evidence.
Working Paper, University of Massachusetts, Department of
Economics.

[5] Rai, B. K., and Sarin, R. Generalized contest success functions.
Economic Theory, 40(1): 139-149, 2009.

[6] Skaperdas, S. Contest success functions. Economic Theory,
7(2), 283-290, 1996.

[7] Sztipanovits, J. and Koutsoukos, X. and Karsai, G. and Kotten-
stette, N. and Antsaklis, P. and Gupta, V. and Goodwine, B.
and Baras, J. and Wang, S. (2012) Toward a Science of Cyber-
Physical System Integration. Proceedings of the IEEE, 100(1):
29-44, 2012.

[8] Yagan, O., Qian, D., Zhang, J., and Cochran, D. Optimal
allocation of interconnecting links in cyber-physical systems:
Interdependence, cascading failures, and robustness. Parallel and
Distributed Systems, IEEE Transactions on, 23(9), 1708-1720.

6


