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Abstract This paper proposes two types of parking choice models, a static game
theoretic model and a dynamic neo-additive capacity model, to capture the compe-
tition among drivers for limited desirable parking spaces. The static game assumes
that drives make decisions simultaneously and with perfect knowledge about the
characteristics of the parking system and the strategies of their fellow drivers in the
system; the model thus captures only the rational aspect of parking choice behavior
and pays no attention to modeling individual drivers’ psychological characteristics.
The dynamic model, on the other hand, considers individual drivers’ psychological
characteristics under uncertainty (i.e. optimistic and pessimistic attitudes) and thus
captures the impacts of the irrational side of parking behavior in addition to the
rational aspect. Following the formulation of the two models, they are both used to
predict parking behavior as observed on a set of parking lots on the University at
Buffalo north campus. Specifically for the dynamic model, the model is first cali-
brated based on real data collected from video recorded observations for a pair of
parking lots, and then used to predict behavior on another pair. Validation results
show higher predictive accuracy for the dynamic neo-additive capacity model com-
pared to the static game theoretic model. This in turn suggests that the psychological
characteristics of drivers play an important role in the parking lot choice decision
process, and points to the potential for parking information systems to eliminate the
unnecessary additional traffic generated by the parking search process.
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1 Introduction

Parking planning and management is a critical need for modern cities. Since the
1990s, traffic caused by parking search has been recognized as a significant contrib-
utor to the urban congestion problem (Polak and Axhausen 1990). In their review,
Polak and Axhausen (1990) state that parking behavior results from a complex
interaction process between the individual characteristics of drivers (the demand side)
and parking opportunities (the supply side). They also conclude that travelers adopt
various strategies based on their previous parking search experiences and the perfor-
mance of the transportation system. Given the complex nature of the parking choice
process, drivers’ parking behavior is still not well understood, despite several previ-
ous studies reported in the literature. Those studies are briefly reviewed below.

Parking search models reported in the literature can be categorized into two groups:
(1) models for parking search within one specific parking lot; and (2) models of drivers’
choice of a given parking lot from among several alternative lots.With respect to the first
category (i.e. search within one lot), one of the earliest models for simulating such
behavior is the PARKSIM system developed by Young (1986). One limitation of that
model, however, is that all drivers are assumed to adopt the same parking strategy.
Cassady and Kobza’s (1998) probablistic approach improves on Young’s framework by
defining two different parking strategies and assuming parking space availability prob-
abilities. More recent simulation-based models (e.g. Young and Weng 2005; Chalamish
et al. 2007; Leephakpreeda 2007) simulate the interaction between the transportation
system and the drivers who want to minimize their own costs. They do not however
include analytical representations of the underlying behavioral processes.

With respect to modeling driver’s choice of a given parking lot from among several
alternatives, which is the focus of the work described in this paper, Thompson and
Richardson (1998) categorized earlier models into utility models (e.g. Van Der Goot
1982; Hunt 1988), optimization-basedmodels (e.g. Goyal and Gomes 1984; Tsukaguchi
and Jung 1989), distribution models (e.g. Ellis and Rassam 1970; Florian and Los 1980;
Young, et al. 1991) and assignment models (e.g. Nour Eldin et al. 1981; Gur and
Beimborn 1984). Thompson and Richardson (1998) also pointed out several behavioral
deficiencies with those earlier models including unrealistic assumptions of perfect
information, no learning knowledge, and no temporal or dynamic aspects in the choice
process. Khattak and Polak (1993) provided a conceptual structure for the parking
choice decision making process, which incorporates factors such as parking informa-
tion, parking facility attributes, individual characteristics, trip characteristics and situa-
tional factors. However, they admitted that the factors influencing “imperfection of
knowledge” (i.e. uncertainty) were not clearly understood.

Following their review of parking choice modeling literature, Thompson and
Richardson’s (1998) proceeded to develop their own parking search model, which
significantly advanced the state-of-the-art, by adapting the economic search principle
of expected gain in utility, to represent the searching patterns of drivers. Their study
especially focused on how the costs associated with the attributes of a parking lot (e.g.,
occupancy, geometric characteristics, payment, waiting time, etc.) combine to constitute
an overall measure of utility. Although the model provided a detailed analytical repre-
sentation, it still lacked consideration of driver’s psychological factors and thus was
unable to replicate the observed irrational aspect of parking behavior, whose importance
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was emphasized by Khattak and Polak (1993). Specifically, Thompson & Richardson
assumed that the perceived utility of a parking lot was constant for all drivers. In reality,
however, drivers with different personalities make quite different decisions when they
face the same situation. Therefore, individual characteristics should not be ignored when
modeling parking behavior. In addition, Thompson and Richardson’s (1998) model was
a discrete choice model, and thus ignored the interactions between the outcome of a
driver’s parking choice and the parking lot availability.

This paper proposes a game theoretic model with both static and dynamic formula-
tions for modeling drivers’ parking choice behavior among alternative parking lots. The
static game borrows the concept and notations of the perfect game theoretic model
developed by Wang and Zhuang (2011). The model is designed to capture only the
rational aspect of parking choice behavior and pays no attention to modeling individual
drivers’ psychological characteristics. Moreover, it is concerned with predicting the
percentage of drivers that go to a given parking lot, rather than predicting the individual
choice of a certain driver with certain psychological characteristics. Themore significant
contribution of the paper is in its development of the dynamic model, which includes a
custom-defined non-extreme-outcome-additive capacity (neo-additive capacity) formu-
lation (Chateauneuf, et al. 2007). The inclusion of the neo-additive capacity formulation
allows the model to capture differences among individual drivers’ psychological char-
acteristics (e.g. optimistic and pessimistic attitudes) towards a parking system’s avail-
ability under uncertainty. Following the formulation of the two models, they are both
used, in a case study, to predict parking behavior as observed on a set of parking lots on
the University at Buffalo (UB), the State University of New York (SUNY) north
campus. For that case study, the dynamic model is first calibrated based on real data
collected from video recorded observations for a pair of parking lots, and then used to
predict behavior on another pair. A comparison is then made between the predictions of
the static and the dynamic neo-additive capacity model to assess the significance of the
irrational aspect of parking choice behavior which reflects individual drivers’ psycho-
logical characteristics.

The rest of this paper is organized as follows. Section 2 formulates the static game-
theoretic parking choice model. Section 3 formulates the dynamic model, and explains
the fundamental theories underpinning the model’s formulation and the different param-
eters capturing the inherent uncertainty associated with the parking choice process and
the drivers’ psychological differences or attitudes toward risk (i.e. optimism or pessi-
mism). Section 4 then provides the details of applying the two models to the case study.
The validation results of the static and dynamic parking choice models, along with the
results of a few sensitivity analyses performed on both models, are then presented in
Section 5. The paper concludes by summarizing the major findings of the study and
providing suggestions for future research in Section 6.

2 A static game-theoretic model

2.1 Model setup

While game theory (Von Neumann and Morgenstern 1944) has been applied to
various problems in transportation before (e.g., Altman and Wynter 2004; Lin and
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Hsieh 2012; Zhang et al. 2005), to the best of the authors’ knowledge, the current
work represents the first attempt to formulate game theoretic parking choice models.
Specifically, the static game-theoretic parking choice model proposed herein consid-
ers a population of strategic drivers who seek to park in their desired lots close to their
destination building or activity location. The model assumes that drivers (1) are
homogenous and rational, (2) desire to minimize their walking distances from where
they park to their destination building or activity location, however, (3) they may not
want to carry out multiple searches among parking lots. This means that while
parking lots close to the destination buildings are more desirable to drivers, the
possibility of not being able to find an empty parking spot there, may deter some
drivers from going there in the first place to avoid the risk of wasting time in
additional parking search processes. The static model further assumes that drivers
have perfect knowledge of the characteristics of the parking system, the time costs,
and the strategies of their fellow drivers. Based on this, drivers make decisions on
whether to compete for the limited spaces in their desirable parking lots by weighing
the expected time costs of both options (i.e., competing vs. non-competing). Those
decisions are made independently and simultaneously by all drivers, who as a result
would not know whether a parking lot is full or not.

To more clearly explain the game-theoretic parking model developed in this paper,
the study focuses on a group of drivers who share one common destination building
and make their choices between two parking lots (the desired lot L1 and the union of
all other alternative lots L2). In other words, L1 is always the parking lot closest to the
destination building, while L2 is the union of all the remaining alternative lots which
are farther away from the building than L1. It is therefore logical to assume that L2 has
a much larger physical capacity, which means that empty parking spaces would
practically always be available. It should be noted, however, that the division of the
available parking lots into just two sets, the desired set L1 and the alternative set L2,
does not really limit the application of the framework to cases with only two choices
or two parking lots. For cases with more than two lots, a hierarchical decision-making
process could be easily employed, whereby the most desirable parking lot is first
picked as L1 and the other parking lots are aggregated as L2. If a driver were to
choose to go to L2, then L2 would itself be then split into a desired lot and an
alternative set of lots, and a similar decision process would then be repeated.

Based on the afore-mentioned assumptions, the following paragraphs will describe
the elements of the model. Table 1 lists the major variables and notations used in the
model formulation.

2.1.1 Parking lot characteristics

We denote the capacity of parking lot L1 by C1, and we assume that, generally speaking,
the capacity of parking lot L2 (i.e., C2) is sufficiently larger than C1 (i.e., C2 >>C1)
because parking lot L2 represents the union of all alternate lots other than L1. As
previously mentioned, in the static model formulation, drivers are assumed to know
the capacity of the two parking lots, along with the probability of being able to find an
available spot in their desired parking lot. Naturally, they do not know the actual
occupancy of a given lot (and hence they do not know whether a lot is full or not),
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since all drivers make their decisions simultaneously. The knowledge ambiguity asso-
ciated with this, and how that ambiguity interacts with the psychological characteristics
of individual drivers, are only modeled in the dynamic model formulation described in
Section 3.

2.1.2 Drivers’ characteristics

We use Λ to refer to the total demand for parking (i.e., the total number of vehicles
arriving at all parking lots within the parking system during the analysis period, D) and
we naturally assume that that demand may vary throughout different time periods of the
day.We then define a variable pi∊[0,1] to capture the decision options for each driver i. In
other words, if pi=1, the driver searches L1 first; and if pi=0, she/he searches L2 first.
With this, we haveX1 ¼ 1

Λ

P
i
pi representing the percentage of all drivers who choose to

search L1 and X2=1−X1 representing the percentage of all drivers who go directly to L2.
The number of vehicles going to L1 and L2 can then be calculated as λ1=X1Λ and λ2=
X2Λ respectively. Finally, we define μ1and μ2 to represent the numbers of vehicle leaving
from L1 and L2 during the analysis period. In this paper, we focus on periods of peak
parking demand where the arrival rate to the parking system is significantly larger than
the departure (i.e. λ1>>μ1 and λ2>>μ2).

2.1.3 Time costs

A driver who searches L1 will incur time cost t1 if she/he successfully parks in L1,
however, if the driver fails to find an available spot because L1 is full, the driver
would then need to travel back to L2, and as a result would incur the extra time cost t3
(which includes the search time within L1 and the travel time from L1 to L2). In
contrast, a driver who goes straight away to L2 will always find an empty space there,
and thus will incur a time cost t2, which includes a longer walking time to the

Table 1 Major notations used in the static model formulation

Notation Explanation

Θ Index of parking lot (θ∈{1,2})
λθ Number of vehicles headed to lot θ during the analysis period, D (vehicles)

μθ Number of vehicles departing from parking lot θ during the analysis time period,
D (vehicles)

Cθ Capacity of parking lot θ (vehicles)

Tθ( ⋅) Expected total time cost associated with choosing parking lot θ first

Λ Number of vehicles arriving at all lots (total parking demand) during time period,
D (vehicles)

pi Parking choice of driver i

bpi Best parking strategy for driver i

Xθ∊[0,1] Percentage of drivers who decide to search lot θ

P(X1)∊[0,1] Probability of failing to park in L1, given that X1% of the total demand head to
parking θ1
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destination building compared to t1. To make the analysis tractable, the magnitudes of
time costs above would have to satisfy the following inequality: t1<t2<(t2+t3).

Given the above, the expected time cost associated with choosing L1, T1(X1), can
be calculated according to Eq. (1).

T1 X1ð Þ ¼ 1� P X1ð Þ½ � � t1 þ P X1ð Þ � t2 þ t3ð Þ ¼ t1 þ P X1ð Þ � t2 þ t3 � t1ð Þ ð1Þ
where, P(X1)∊[0,1]denotes the probability of failing to find a space in L1 when the
percentage of drivers searching L1 is X1 of the total demand, Λ. As can be seen, the first
term of Eq. (1) captures the case of those drivers who manage to find a spot in L1,
whereas the second term of the equation is for those drivers who fail to find a spot in L1

and therefore have to travel back to L2 to park there. Obviously, P(X1)∊[0,1] only when
the number of drivers searching L1 is greater than the sum of the capacity of L1 and the
additional spaces vacated by the vehicles departing from L1; this is expressed mathe-
matically as, l1 ¼ X1Λ > μ1 þ C1ð Þ . In that case, some drivers choosing L1 are unable
to park in L1 because it is full. On the other hand, when X1Λ ≤ (μ1+C1), all drivers
choosing L1 would be able to park there. P(X1) can thus be calculated as in Eq. (2).

P X1ð Þ ¼ 1� μ1þC1

ΛX1

μ1þC1

Λ < X1 � 1

0 0 � X1 � μ1þC1

Λ

(
ð2Þ

For the drivers who go directly to L2, their expected time cost T2(X2) is a constant,
as shown in Eq. (3).

T2 X2ð Þ ¼ t2 ð3Þ

2.2 Definition of equilibrium or convergence

Based on the assumption that each driver hopes to minimize his or her expected time
cost, the best strategy bpi for driver i is given as in Eq. (4):

bpi ¼ 1 if T1 X1ð Þ < T2 X2ð Þ
0 if T1 X1ð Þ > T2 X2ð Þ
2 0; 1ð Þ if T1 X1ð Þ ¼ T2 X2ð Þ

8<
: ð4Þ

Therefore, only if T1(X1)=T2(X2), would going to L1 and L2 be both regarded as
best strategies for drivers, and hence a state of equilibrium may be assumed to exist
with no driver having a better strategy to lower parking cost by switching parking
choices. Based on Eqs. (1), (2), (3), and (4), therefore, the percentage of drivers
choosing to go to lot L1 first, at equilibrium, may be calculated by setting Eq. (1)
equal to Eq. (3). This results in:

X *
1 ¼ t2 þ t3 � t1ð Þ μ1 þ C1ð Þ

t3Λ
ð5Þ

Note that for Eq. (5), and given that X1 has to be equal to or less than 1.0, the

condition that Λ � t2þt3�t1ð Þ μ1þC1ð Þ
t3

has to be satisfied, otherwise, X1
*would have to

equal to 1.0. With this, the values of X1
*at equilibrium, and the conditions for that

equilibrium to be valid can be summarized as shown in Table 2.
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3 A dynamic neo-additive capacity model

The previous section focused on a static parking game formulation, based on the
assumptions that all drivers are identically rational and make decisions simultaneously.
Building on this, the current section formulates a dynamic model formulation which
relaxes the assumptions above and views the parking game as a sequential process under
the uncertainty regarding a parking lot’s availability. The aim of the dynamic model is to
capture the heterogeneity among drivers in terms of their parking behaviors and attitudes
toward risk. Specifically, as opposed to the static model which captures the “rational”
aspect of parking choice decision-making, the dynamic model reflects the “irrational” or
subjective attitudes towards uncertainty (ambiguity), such as pessimism and optimism.

3.1 Model setup

3.1.1 The neo-additive capacity concept

Different types of people show different attitudes when facing uncertainty. An
optimistic person overestimates the likelihood of good outcomes while a pessimistic
person exaggerates the likelihood of bad outcomes. To account for this, Chateauneuf
et al. (2007) improved the rank-dependent Choquet-expected utility (CEU) model
(Schmeidler 1989) by introducing the concept of neo-additive capacity, which con-
siders both the rational attitude as well as the irrational attitude (pessimism and
optimism) towards uncertainty (Wakker 2001). The dynamic parking choice model
proposed in this study makes use of Chateauneuf’s formulation.

As shown in Fig. 1, an individual’s decision-making process can be viewed as
containing aspects of both rational and irrational behavior. If the information is clear
and precise, the decision maker can make a completely rational decision. Otherwise,
the irrational aspect plays its role. A constant δ named “ambiguity factor” is intro-
duced to represent the degree of unknown information for a person’s perception. δ is
defined to be in the range [0,1], where δ=0 means perfect information is available to
the decision maker, and hence he/she should adopt strategies purely based on
expected utility (EU) theory. When δ increases, the portion of ambiguous knowledge
also increases. δ=1 refers to the case of complete ignorance about the situation.

When dealing with ambiguity, people often make decisions according to their
personalities. The irrational component of decision-making thus includes two psy-
chological aspects: optimism (considering the best result) and pessimism (considering

Table 2 The equilibrium of the static game

Conditions X1
a

Λ < μ1 þ C1ð Þ & t1 < t2 < t2 þ t3ð Þ 1

μ1 þ C1ð Þ � Λ < t2þt3�t1ð Þ μ1þC1ð Þ
t3

& t1 < t2 < t2 þ t3ð Þ 1a

Λ � t2þt3�t1ð Þ μ1þC1ð Þ
t3

& t1 < t2 < t2 þ t3ð Þ t2þt3�t1ð Þ μ1þC1ð Þ
t3Λ

a Note that this condition represents the case where the probability of failing to find an available spot in L1

is so small that it is still more advantageous, from an expected total time cost standpoint, to go to L1 first
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the worst result). A person has his/her own way of balancing these two aspects, by
giving them different weights. We use α to denote the degree of optimism, as is also
shown in Fig. 1. For a pure optimist, α is closer to 1; otherwise α is closer to 0.
Pessimism can therefore be defined as 1- α.

Considering both the degree of ambiguity and the degree of optimism, the neo-
additive capacity, v, is then formulated as shown in Eq. (6).

v ¼ d � a �max u x1ð Þ; . . . ; u xnð Þf g þ 1� að Þ �min u x1ð Þ; . . . ; u xnð Þf gð Þ

þ 1� dð Þ �
Xn
m¼1

pmu xmð Þ ð6Þ

Where, u(.) is the expected utility function, and πm are decision weights satisfying

the condition that
Pn
m¼1

pm ¼ 1 . Details regarding this formulation can be found in

Chateauneuf, et al. (2007), and in Sarin and Wakker (1998).

3.1.2 Neo-additive capacity formulation of the parking choice game

Based on Eq. (6), the neo-additive capacities for the dynamic parking game can be
defined, as shown in Eqs. (7) and (8). Note that besides the already mentioned time
cost notations, all notations used in the dynamic model are summarized in Table 3.

vi1 ¼ d � ai �min t1; t2 þ t3ð Þf g þ 1� aið Þ �max t1; t2 þ t3ð Þf g½ � þ 1� dð Þ
� 1� pið Þt1 þ pi � t2 þ t3ð Þ½ �¼ d � ai � t1 þ 1� aið Þ � t2 þ t3ð Þ½ �
þ 1� dð Þ� t1 þ pi � t2 þ t3 � t1ð Þ½ �

ð7Þ

vi2 ¼ t2 ð8Þ
The drivers will therefore make their decisions by comparing the capacity values,

vi1 and vi2. Note that the capacity here is defined based on disutility, and thus each
driver will choose the parking lot associated with the smaller capacity value, which is
in essence the smaller time cost. For example, when vi1< vi2, the driver i chooses to go
to L1, otherwise he/she goes to L2. Also note that the formulation of Chateauneuf et

Fig. 1 Decomposition of indi-
vidual characteristics
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al. (2007), previously shown in Eq. (6), is based on utiltiy, and hence an individual
chooses the option with larger capacity value. This is the reason behind the switching
of the min and max operators between Eqs. (6) and (7).

3.1.3 Uncertainty, optimism, and pessimism parameters

In our dynamic parking model, we assume δ to be an unknown constant, and α
to be normally distributed among drivers with a mean μ and a variance σ2. In
other words, for an individual driver i, his/her ai~Nðμ; σ2Þ . However, given
that αi has to lie between 0 and 1, the range of the normal distribution is set to
that range and adaptively limited to within [μ-3σ, μ+3σ], which covers 99.7 %
of the values. It should be noted that, if desired, the proposed modeling
framework can be easily extended to the case where the ambiguity factor, δ,
also varies among drivers. This variation could be used to reflect, for example,
different levels of access to information about parking availability through
different levels of prior experience with the parking system and the associated
learning process. In such cases, an appropriate probability distribution would
have to be assumed for δ.

3.1.4 The probability of the first-choice parking lot being full

When a certain driver is making a choice between L1 and L2, the probability of L1

being already full should be expected to influence the driver’s decision. It can
therefore be safely assumed that a driver’s perceived probability of L1 being full is
a key factor in choosing whether to go to parking lot L1 or L2. In our model
formulation, we use that perceived probability as the decision weight (i.e. the πi) of
the neo-additive capacity formulation of Eq. (7). The probability of a parking lot
being full is naturally related to the current occupancy of the lot (i.e. the total number
of vehicles currently parked divided by the total capacity of the lot), which we denote
by O. However, because drivers, in the absence of parking guidance system, typically

Table 3 Major notations for the dynamic model

Notation Explanation

θ∈{1,2} Index of parking lot

i∈{1,2.., n} Index of driver

δ∈[0,1] Ambiguity factor

αi∊[0,1] Index of optimism of driver i

Oo∊[0,1] Initial occupancy of L1

Oi∊[0,1] Occupancy of L1 after driver i makes his/her parking lot choice

πi∊[0,1] Driver i’s perceived probability of L1 being already full

νiθ Driver i’s neo-additive capacity of searching lot θ

γ Factor determines how pronounced the inverse-S shape curve is

pi(αi,Oi−1)∊{0,1} Driver i’s choice

gi(αi,Oi−1)∊{0,1} Outcome of driver i’s choice in terms of the incremental increase in Oi
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do not have complete information about the L1’s occupancy, their perceived proba-
bility of a parking lot being full must be assumed to be different from that in reality.

A formulation is therefore needed to calculate the perceived probability of L1

being full (π) from the occupancy of the parking lot (O); obviously, π and O are both
required to be within the range of [0, 1]. Moreover, it can be assumed, that for a given
driver, the concern about finding an available parking space becomes an issue when
the occupancy of the parking lot is approaching its maximum capacity. Based on the
aforementioned assumption, π should grow slowly until O is getting close to 1. We
therefore calculate π using an inverse-S-shaped Quiggin function (Tversky and
Kahneman 1992), as shown in Eq. (9).

pðOÞ ¼ Og

Og þ 1� Oð Þg½ �1=g
ð9Þ

where,γ is a factor which determines how pronounced the inverse-S shape curve is.
Based on empirical information, De Palma et al. (2008) stated that the recom-

mended range for the factor, γ, is between 0.279 and 1. In this paper, we therefore
assume a value for γ close to its lower bound; specifically, we assume γ to be equal to
0.3. The reason for doing this is best explained by looking at Fig. 2, which plots the
curves of π versus O for different γ values, compared to a 45-degree straight line
(which corresponds to a value of γ equal to 1.0). As can be seen, the inverse-S shape
generated by γ=0.3 captures the phenomenon we are interested in modeling. With
this curve, our model can reflect the fact that drivers start getting concerned about L1

being full (i.e. π starts increasing significantly), only after O reaches a value above
0.9. For lower values of O, π maintains quite small values.

3.1.5 A sequential gaming process

We now define two variables pi(αi,Oi−1)and gi(αi,Oi−1), as shown in Eqs. (10) and
(11) respectively. The variable pi(αi,Oi−1) captures the decision made by a given
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driver i with αi degree of optimism. Similar to the static model, pi is set to 1.0 if the
driver chooses to go to L1, and it is equal to 0, if he/she decides to go to L2. The
variable gi(αi,Oi−1)on the other hand captures the outcome in terms of the incremental
increase in the number of cars parked in parking lot L1. Specifically, gi(αi,Oi−1)is
equal to 1.0 if the driver goes to parking lot L1, and manages to park there, otherwise
0. Considering a single driver i in this game, and given his/her αi, and the occupancy
of parking lot L1 after the previous driver (i-1) had made his/her decision, Oi−1, the
values of the two variables can be calculated by comparing the corresponding neo-
additive capacity values, as follows.

piðai;Oi�1Þ ¼ 1; vi1 < vi2
0; vi1 � vi2

;

�
ð10Þ

gi ai;Oi�1ð Þ ¼ 1; if Oi�1 < 1 & vi1 < vi2;
0; if Oi�1 ¼ 1;

�
ð11Þ

Now consider a permutation (α1, α2…, αn) which captures the psychological
attitudes of a total of n drivers in terms of their optimistic index α, and an initial
occupancy of L1 denoted by O0 (O0<1). Once the parking game starts, players make
their choices one by one. If driver i chooses L1 and finds a space therein successfully,
then the Oiwill be increased by one unit fromOi−1; otherwiseOi=Oi−1. The increment
in L1’s occupancy affects the perceived probability of the parking lot L1 being full πi
+1(Oi) for the next driver i+1, and thereby affects his/her disutility and the neo-
additive capacity values, and finally affects his/her parking lot choice. This means
that the moves of subsequent players are affected by the moves of their antecedents.
This is demonstrated by Eqs. (12) through (14).

O1 ¼ O0 þ g1 a1; p0ð Þ C1= ; ð12Þ

O2 ¼ O1 þ g2 a2;O1ð Þ C1= ; ð13Þ

Oi ¼ Oi�1 þ gi ai;Oi�1ð Þ C1= ; ð14Þ

3.2 Simulation

The dynamic model formulated above is designed to be used within a simula-
tion environment to simulate drivers’ parking lot choices and the resulting
search process. The simulation process is described by the pseudo code shown
in Fig. 3.

As can be seen from the pseudo-code, there are three unknown parameters:
(1) the ambiguity factor, δ; (2) the mean μ; and (3) the variance σ2 of the
distribution of the driver’s index of optimism α. Those parameters can be
calibrated first based on observed data before using the model to predict
drivers’ behavior for other scenarios (the calibration process is described in
the next subsection). It should also be noted that, to make the game more
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realistic, we also simulate the effect of vehicles departing from parking lot L1

and assume that the departure rate follows a uniform distribution.

3.3 Model calibration with genetic algorithms

In this study, a Genetic Algorithm (GA) was developed to calibrate the dynamic
model parameters, although other search or optimization methods could of course
have been used. The idea was to first calibrate the parameters based on observed
drivers’ parking lot choice at a set of two parking lots, before using the model to
predict drivers’ behavior at other lots. As is well known, GAs are stochastic algo-
rithms whose search methods are based on the concept of survival of the fittest, and
which have been widely utilized to solve hard optimization problems in transporta-
tion and elsewhere (e.g., Michalewicz 1994; Shepherd and Sumalee 2004; Neema et
al. 2011). In a typical GA, each possible solution is coded using a data structure, and
is called an individual. Many individuals comprise a population. The “fitness” of
each individual is then evaluated by a fitness function which gives an index indicating
how good the individual is. Using a selection mechanism (to select individuals
according to their fitness), the whole population is then evolved from one generation
to the next. In this process, each individual is subject to possible alterations by means
of genetic operators to include migration (an individual joins the next population
without being modified), mutation (an individual joins the next population with a
slight modification), and crossover (two individuals creates one offspring which joins
the next population). The overall fitness and best fitness of the population are
expected to improve over generations, and after several generations, the algorithm
is expected to converge and reach a near optimal solution.

Developing a GA to solve a given problem requires: (1) a representation scheme to
represent the individuals or the candidate solutions; (2) a fitness function to evaluate
the individuals; (3) a procedure to generate the initial population; (4) a procedure for
selecting the more fit individuals from a given generation; and (5) mutation and
crossover operator. In addition, one needs to specify the GA control parameters,
which include the population size (i.e. the number of individuals per generation); (2)
the number of GA generations (i.e. iterations of the algorithm); and (3) the probabil-
ities of applying the mutation and crossover operators. A brief description of the
aforementioned GA components is given in Table 4. With respect to the GA control
parameters, a population size equal to 100 was used, and the GA was run for 20
generations. The probabilities of applying the migration, mutation and crossover
operators were 10 %, 80 %, and 10 % respectively.

Fig. 3 Pseudo code: simulating the dynamic game
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4 Case study

4.1 Parking lots’ configuration and characteristics

As mentioned in Section 1, the developed static and dynamic parking models were
applied to a real world case study involving modeling parking behavior on a subset of
the parking lots on UB north campus. Specifically, the case involved two datasets of
parking choice observations on UB north campus as shown in Fig. 4. As can be seen,
each dataset consisted of two lots (L1 and L2) connected via one major road. For dataset
1, the Ketter lot is closer to the campus building compared to the Jarvis A lot, therefore
the Ketter lot is used to represent the first choice lot L1 and the Jarvis A lot is regarded as
parking lot L2. Similarly, for the second dataset, the Governors B Lot is L1, while the
Governors D lot is L2. It should be noted that, for dataset 2, only the part of the parking
lot inside the highlighted box was considered as L1, since the other part, outside that box,
is exclusively for campus visitors and is separated from L1 via a parking gate.

Table 4 GA settings

GA Component Purpose Definition

Representation
Scheme

To represent each
individual using a
memory structure.

Each individual is represented by a 3-element, real-
value coded vector which corresponds to the three
unknown parameters to be calibrated (δ, μ, σ2).

Fitness Function To calculate the fitness
of each individual.

After simulating the sequential game and simulating
drivers’ choices one by one, the fitness of each GA
individual is calculated by averaging the following
two Absolute Percent Errors (APE): (1) the APE
between the game simulated and field observed
numbers of players going to L1 before it is full; and (2)
the APE of players going to L1 after it is full.

Selection Scheme To select individuals
according to their
fitness.

A roulette wheel selection procedure is adopted (see
Michalewicz 1994 for more details).

Initial Population
Creation Function

To create the first
generation of
population.

The initial values δ and μ are generated from a uniform
distribution between 0 and 1. In order to limit the
distribution [μ-3σ, μ+3σ] so as not to go outside the
allowable range of [0, 1], the σ2 value would have to
depend on the value of μ. Given this, after a value for
μ is selected for a given individual, the algorithm first
calculates the minimum distance, d, from μ to the
lower (i.e. the 0) or the upper (i.e. the 1.0) bound
allowed for the optimism parameter, α. In other
words, the distance d is calculated as equal to min{μ,
1-μ}. σ2 is then generated using a uniform distribution
between 0 and d2/9, so as to ensure that [μ-3σ, μ+3σ]
will be within the allowable range of [0, 1].

Mutation Function To slightly modify
an individual.

The mutation operator works by simply applying a
factor of either 95 % or 105 % to either δ, μ or σ2.

Crossover Function To create a new
individual based
on two existing
individuals.

The crossover operators works by calculating the
straight average of the elements of two individuals.
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Although the parking lot sizes vary between the two datasets, the two parking lot
pairs have other similar characteristics and serve the same university population (i.e.
faculty, staff and students). The capacity and the initial occupancy of each lot (i.e.
occupancy when the parking choice observations started) are shown in the upper half
of Table 5. The table also lists the values for the time costs, t1, t2, and t3 as observed in
the field. The walking time was estimated by having volunteers walk at regular
speeds from the geographic center of each parking lot to the destination building,
and recording the time taken using a stopwatch. The search time and the time needed
to drive from one lot to another were based on the video recordings of parking
behavior as described in Section 4.2.

Fig. 4 Location of the two sets of parking lots

Table 5 Data summary for case study

Dataset 1 Dataset 2

L1 Ketter Governors D

L2 Jarvis A Governors B

t1 36 s 75 s

t2 110 s 261 s

t3 58 s 98 s

C1 113 526

O 68 91

7:00–
7:30

7:00–
8:00

7:00–
8:30

7:00–
9:00

7:00–
9:30

9:00–
9:15

9:00–
9:30

9:00–
9:45

9:00–
10:00

N1 22 45 45 45 45 120 173 242 286

N2 24 54 54 54 54 2 5 9 18

N3 0 29 49 78 106 0 0 0 0

N4 0 98 260 424 492 0 0 0 0

μ1 1 3 9 16 25 3 9 13 16
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For the dynamic model, the GA-based calibration uses dataset 1 to determine the
three unknown parameters (i.e. δ, μ, and σ2) that allow the model predictions to best
fit the observed parking behaviors. The ability of the calibrated model to replicate
drivers’ parking choices is then assessed by comparing the model’s predictions
against field observations not only for the first dataset, but also for the second. This
allows the study to assess whether the parameters calibrated for one site are
transferrable to other sites.

4.2 Parking choice data collection

In order to calibrate and validate the models, video recordings were made of drivers’
parking choice behavior at the two sets of parking lots, on a typical Thursday while
the university was in session. The data recorded were then manually reduced to
extract detailed parking choice and behavior records for each driver entering the
parking system. For dataset 1, parking lot choice behavior was observed for a two and
a half hours time period, whereas for dataset 2, observations lasted for a full hour. The
observed driver choice records were then sliced into 30-min segments for dataset 1
and 15-min segments for dataset 2. The motivation behind slicing the full observation
period into shorter time slices was to increase the number of data points used in
model validation and comparisons.

Specifically, for each time slice, the observed data were summarized using the
following four key variables: (1) the total number of vehicle entering L1 while there
are still parking spaces available in L1, denoted by N1; (2) the total number of vehicle
going directly to L2 while there are still parking spaces available in L1, denoted by
N2; (3) the total number of vehicle entering L1 when it is full, denoted by N3 – these
vehicles would thus fail to find a spot in L1 and would have to switch to L2; and (4)
the total number of vehicle going to L2 when L1 is full, denoted by N4. The extracted
data are summarized also in Table 5 (the lower half), which also records the numbers
of vehicles departing from lot L1, μ1. As can be seen, the values for μ1 are very small
compared to the arrival rates, because observations were taken during the morning
peak, when faculty, staff and students are heading toward the university.

5 Results and discussion

5.1 Calibration results

Using dataset 1 for the time period 7:00–9:30, the three parameters of the dynamic
parking choice model were first calculated using GA. As previously described, the
GA provides approximate near-optimal values for the following three parameters (δ,
μ, and σ2). The final results obtained from five different runs of the GA are shown in
Fig. 5 (given the stochastic nature of GAs, the results from different runs of the model
typically vary). Specifically, the figure plots the distribution of the optimism index, α,
using the values obtained for μ and σ2, as well as the value obtained for the ambiguity
factor, δ. The dashed lines represent the results from the five different runs, whereas
the thick solid line represents the average from the five runs. To be noted from Fig. 5
is the observation that the results from the different GA runs are very close to one
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another, which indicates that the GA appears to be converging on the near “optimal”
values for the dynamic parking choice model’s parameters.

As can be seen from Fig. 5, for the driver population considered, the index of
optimism (α) appears to have a mean value of around 0.576 and a variance of around
0.103. This means that an average person in that population appears to have a slightly
more optimistic attitude toward parking availability in his/her first choice parking on
campus. On the other hand, the value of the ambiguity factor (δ) was found to be
around 0.68, which indicates that the irrational attitude component plays an indis-
pensable part in the parking lot choice decision process. This is obviously attributable
to the imperfect information that drivers have regarding parking availability, in the
absence of a parking guidance system.

5.2 Models’ predictive accuracy and comparisons

In order to assess the predictive accuracy of the static and dynamic models, their
predictions were compared to the field observations of parking lot choice behavior.
Specifically, the number of drivers predicted by the models to go to parking lots L1

and L2 were contrasted against the field records values for (N1+N3) and for (N2+N4),
respectively. This was done for both datasets 1 and 2, and for the static and dynamic
models.

Figure 6 shows the results of the comparisons performed. As can be clearly seen
from Fig. 6, the neo-additive capacity dynamic model appears to be providing a more
accurate prediction of the numbers of drivers going to L1 and L2 compared to the
static model, and thus seems to be more capable of replicating and predicting parking
behavior in the parking systems considered. As an example, consider dataset 2 (b)
which corresponds to the scenario when the total arrival rate or travel demand is less
than the capacity of parking lot L1. For that scenario, it was noticed from field
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Fig. 5 Calibrated parameters for the dynamic parking model
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observations that some drivers, in order to avoid the perceived risk of not being able
to find an available spot there, decided to go straight to parking lot L2 and park there.
The static model however predicted that no driver would go to L2 as can be seen from
Fig. 6. Only the dynamic model was able to replicate the observed behavior of
drivers, and predicted that some drivers, with a rather pessimistic attitude toward
parking availability in L1, would actually go to L2 as was observed. The validation
results thus seem to indicate that the drivers’ psychological characteristics towards
uncertainty significantly affect their parking behavior, and that the dynamic model is
more reliable for parking behavior modeling and forecasting.

Another observation that can be made from Fig. 6 is that the static model appears to be
giving reasonably accurate results only when the occupancy of parking lot L1 was well
below its capacity (i.e. when there were still several spaces available in that parking lot).
Under those circumstances, there is a little risk in going to search for spaces in parking lot
L1, and hence the majority of drivers make that decision. This explains why the static
model was able to capture the parking behavior under such circumstances, because the
psychological characteristics of drivers do not play a big role when there is little risk.

5.3 Scenario analyses

A key objective of effective parking management is to reduce the magnitude of the
additional traffic resulting from the search process (i.e. drivers who go first to their most

Dataset 1 (a) Dataset 2 (a) 

Dataset 1 (b) Dataset 2 (b) 
Fig. 6 Validation of the two models’ predictions of drivers’ parking choices
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desirable parking lot, only to find it full and hence need to go search for a spot in another
parking lot). Using the notation introduced in this paper, that additional volume is equal
to (λ1−C1−μ1), where all notation is as introduced before (we will refer to that volume
on the subsequent plots using the term “extra” or additional parking search traffic).
Following the development and validation of the models, therefore, the study proceeded
to assess the impact of a number of hypothetical scenarios on the additional parking
search traffic. Specifically, the study considered the impact of the following three
scenarios on the additional parking search traffic volume between the two parking lots
in the first dataset: (1) changes in the total parking demand, Λ; (2) changes in the

capacity of the first choice parking lot, C1; and (3) changes in the time cost ratio t2þt3
t3

� �
.

Note that since increasing the departure rate of first choice lot μ1 has the same impact as
increasing the first lot’s capacity C1, the study did not consider scenarios involving a
change in the number of departing vehicles, μ1.

The baseline values for the test scenario considered and for the full observation
period lasting from 7:00 to 9:30 am (see Table 5 above) can be summarized as
follows: (1) a total demand, Λ=O(L1)+N1+N2+N3+N4, equal to 765 vehicles; (2) a
total of 25 vehicles departing, μ1; (3) a parking lot capacity for the first choice lot, C1,
of 113 vehicles; (4) values for t1, t2, t3 equal to 36, 110, and 58 s respectively; and (5)
an observed value for the additional or extra traffic (N3) equal to 106 vehicles (i.e.
vehicles that went first L1, but failed to find a parking spot there and had to go back to
L2). For that scenario, the static model predicted a value for X1

*=0.410, which
corresponds to a value for the additional parking search traffic equal to X *

1Λ� >
C1 � μ1 ¼ 176 . The calibrated dynamic model, on the other hand, predicted a value
of 106, which is identical to the observed value (see Fig. 6).

5.3.1 Impact of change in the total arrival rate on additional parking search traffic
volume

Figure 7 shows the impact of changes in the total arrival rate of drivers Λ on the
magnitude of the additional parking search traffic volume; results are shown for both the
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static and the dynamic neo-additive capacity model. Note that the traffic volume plotted
on the vertical axis here is different from the number of “Drivers to L1” previously
plotted on Fig. 6, since a subset of the drivers to L1 actually succeed in finding a spot in
L1. As can be seen, two distinct phases can be distinguished for the static model
predictions. In the first phase corresponding to relatively low arrival rates, Λ is either

less than (μ1+C1)or less than
t2þt3�t1ð Þ μ1þC1ð Þ

t3
, and therefore under both those con-

ditions, X1
*=1.0 (as previously discussed in relation to Table 2 above). Specifically,

when Λ is between 0 and 138 vehicles, Λ<(C1+μ1) and therefore there is enough
capacity in L1 to accommodate all drivers, and as result the static model predicts 0
additional parking search traffic. For values of Λ between 139 and 314 (i.e. the value of
t2þt3�t1ð Þ μ1þC1ð Þ

t3
), the equilibrium condition corresponds to the second case previously

outlined in Table 2, which as discussedmentioned in the footnote to Table 2, refers to the
case where the probability of failing to find an available spot in L1 is small enough that it
is still more advantageous from an expected travel time standpoint to search L1 first. As
a result, X1

* is also equal to 1.0, and hence λ1=Λ, in that case. For that interval, the
volume of searching traffic would be equal to (Λ - 138). Finally when the arrival rate
exceeds 314, the parking system satisfies the third condition of reaching equilibrium in
Table 2, the parking system is at equilibrium, and the additional search traffic is a

constant, since l1 ¼ X *
1Λ ¼ t2þt3�t1ð Þ μ1þC1ð Þ

t3
and thus λ1−C1−μ1=176 vehicles. The

fact that the additional search traffic remains constant for all values of Λ above 314
vehicles, points to a limitation of the static model which stems from the fact that the
model ignores the psychological characteristics of drivers.

On the other hand, the predictions of the dynamic or sequential, neo-additive capacity
model appear to agree more with intuition. As can be seen from Fig. 7, the dynamic
model predicts an increase in the amount of additional or parking search traffic with
increases in the total traffic demand desiring to park. The trend appears to be linear
(please note that the oscillations in the figure are a result of the stochastic elements in the
model in terms of the distribution of the optimistic and pessimistic attitudes of the driver
population, for example). The dynamic model predictions are also much closer to the
observed base case value, as previously discussed. Another observation that could also
be made is that, for values of Λ less than around 1200 vehicles, the irrational aspect of
decision-making, which reflects the psychological characteristics of drivers in terms of
their optimistic and pessimistic attitudes, appear to benefit the parking system, since the
amount of traffic predicted by the dynamic model is less than that predicted by the static
model which only accounts for the rational aspect of decision-making.

5.3.2 Impact of change in the capacity of the first choice parking lot on additional
parking search traffic volume

Figure 8 shows the impact of changes in the capacity of the first choice parking lot on
the amount of additional parking search traffic volume generated, as predicted by both
the static and dynamic models. Once again, the predictions of the static model appear to
significantly differ from those of the dynamic model. For values of C1 satisfying the

condition Λ � t2þt3�t1ð Þ μ1þC1ð Þ
t3

, the equilibrium value X1
* ¼ t2þt3�t1ð Þ μ1þC1ð Þ

t3Λ
, which

means that the additional traffic can be calculated as follows: l1 � C1 � μ1 ¼ Λ �
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t2þt3�t1ð Þ μ1þC1ð Þ
t3Λ

� C1 � μ1 ¼ t2�t1ð Þ μ1þC1ð Þ
t3

. Given this, for that range of values (specif-

ically for C1 between 0 and 313), the magnitude of the additional parking search traffic is
predicted to increase as the capacity of the lot increases. According to the static model,
therefore, the implication is that investments in increasing the size of the first choice
parking lot would lead to the undesirable result of generating additional search traffic,
since there is now a higher probability of finding an available parking space there, which
would in turn encourage more drivers to search that lot first.

Further increases in the capacity of the first choice parking plot would lead to a value
of Λ . When this happens, X1

* becomes equal to 1.0, and accordingly, the value of the
additional parking search volume can be calculated as l1 � C1 � μ1 ¼ Λ� > C1 � μ1

, whichmeans that in that case, the additional traffic volumewill decrease as the capacity
increases. This continues until a value for the capacity equal to 740 spaces, when the
magnitude of the additional parking search traffic drops to 0, because the total demand is
less than the capacity of the lot minus the number of vehicles departing (765–25=740).

Considering now the dynamic or sequential model predictions, one immediately
notices a generally decreasing trend in the magnitude of the additional parking search
traffic with increases in the capacity of the first choice parking lot (once again the
oscillations are due to the stochastic elements in the dynamic model). Moreover, the rate
of decrease in the magnitude of the traffic volume appears to slow downwith increases in
the capacity. For example, it seems that having a parking lot with a capacity of less than
100 spaces would result in a dramatic increase in the parking search traffic. For values
above 100 spaces, the additional traffic volume decreases, but at a much lower rate than
its rate of decrease for capacity values less than 100 spaces. Analyses such as these may
therefore be beneficial in determining theminimum size of themost desirable parking lot.

5.3.3 Impact of change in the time cost structure on additional parking search traffic
volume

The study also investigated the impact of changing the relative values of the different
time cost elements associated with the problem formulation. As previously
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mentioned, three different variables were defined to capture the different time cost
elements: t1, which captures the time cost involved in going to L1 and successfully
parking there; t2, which captures the time cost of going to L2 right away, parking there
and walking a longer distance to the destination building; and t3, which captures the
additional time incurred for a driver who goes first to L1, finds the lot full and thus
drives back to L2. A time cost ratio was thus defined as r=(t2+t3)/t2, to represent the
relative magnitude of the “penalty of risk seeking” (i.e. seeking to find a spot first in
L1) over the “cost of risk avoidance” (i.e. going straight to L2).

Figure 9 shows the likely change in the magnitude of the additional search traffic
volume, predicted by both the static and dynamic models, as the value of r changes from
1.25 to 1.70. As can be seen, while both the static and dynamic model appear to predict a
decrease in the magnitude of the search traffic volume with increasing values of the ratio,
r, there are still noticeable differences between the two models’ predictions especially at
higher values of the ratio. Specifically, for ratios less than around 1.45, the predictions of
the two models appear to be close to one another. On the other hand, starting from values
of r greater than 1.50, there is a noticeable divergence in the predictions of the two
models. For example at a value of r equal to 1.70, the dynamic model predicts zero
additional traffic, whereas the static model still predicts close to around 100 vehicles who
would go first to L1, find it full and drive back to L2. Intuitively, one would expect that as
the value of the penalty of risk seeking increases relative to the cost of risk avoidance, a
majority of drivers would prefer to go to the second parking lot right away. The dynamic
model, because it accounts for the psychological characteristics of drivers, appears to be
capable of reflecting that phenomenon, whereas the static model could not.

6 Conclusions and future research

6.1 Research conclusions

In this paper, two types of parking choice models utilizing game theory were
developed. Because the static model pays no attention to modeling individual drivers’
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psychological characteristics, it represents an aggregate model designed to only
predict the percentage of drivers that go to a given parking lot, rather than predicting
the individual choice of a certain driver with certain psychological characteristics.
The dynamic model, on the other hand, includes a custom-defined neo-additive
capacity formulation which allows it to capture differences among individual drivers’
psychological characteristics in terms of their optimistic and pessimistic attitudes
toward a parking system under uncertainty. The dynamic or sequential model is
therefore a disaggregate behaviorally-based model, fit for incorporation within an
activity-based or agent-based transportation modeling framework. Among the main
conclusions derived from the study are:

(1) The dynamic or sequential neo-additive capacity model appears to be quite
capable of accurately replicating and predicting drivers’ observed parking
choice behavior. This was quite evident from the results shown on Fig. 6, where
the dynamic model predictions were quite close to field observations.

(2) Compared to the static game-theoretic model, the sequential neo-additive ca-
pacity model appears to offer superior predictive accuracy, as was also shown on
Fig. 6. Moreover, the results of the sensitivity analysis conducted on the two
models demonstrate that the insights gained from the dynamic model are more
intuitive and logical compared to the static model. This in turn seems to indicate
that drivers’ psychological characteristics towards uncertainty, and their pessi-
mistic or optimistic attitudes regarding parking availability, play a significant
role in the parking choice decision-making process and hence need to be rightly
accounted for in modeling.

(3) For the same driver population, the results from the study indicate that the
parameters of the sequential neo-additive capacity model (namely the mean and
standard deviation for the optimistic index, α, and the ambiguity factor, δ) are
transferable from one parking system to another. This was evident from the fact
that the calibrated model for the first pair of parking lots (dataset 1) yielded very
high predictive accuracy when applied to the second pair of lots (dataset 2).

(4) For the driver population considered in this study (faculty, staff and students at
UB), drivers, on average, seemed to have a slightly more optimistic view
regarding parking availability in their most desirable parking lot (i.e. the opti-
mistic index (α) had a mean value of 0.576). Moreover, the irrational side of
decision making (indicated by a value for the ambiguity factor δ close to 0.7)
appeared to constitute an indispensable component of their parking lot choice
decision process.

(5) Given conclusion (2) and (4) above, which clearly demonstrate the significant
role that drivers’ optimistic and pessimistic attitudes play in their parking lot
choice decision-making process, an effective parking management and infor-
mation system has the potential to significantly reduce the magnitude of the
additional traffic volume resulting from the parking search process.

6.2 Limitations and future research

There are several future research directions which the authors are planning to pursue
in order to complement the current work. Three such directions are listed below:
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(1) The parking systems considered in this study consisted of a smaller, more
desirable parking lot as opposed to a much larger, less desirable lot, which in
fact represented the union of all remaining alternative lots as previously de-
scribed. In their future research, the authors plan to test the model on parking
systems consisting of more than two lots. For that case, the authors will employ
a hierarchical decision-making process, whereby decisions would be made in a
sequential fashion, as previously described. This means that, following a driv-
er’s choice of his/her most desirable lot, L1, the alternative “aggregate” lot, L2,
would then split into a desired lot (i.e. the second choice parking lot) and an
alternative lot (represents the union of all remaining lots), as previously
explained in Section 2.1.

(2) Given that the model described in this work was developed and tested on a
university campus parking system, future research will focus on applying the
model to other parking environments that are significantly different from the
case study herein.

(3) Finally, the authors plan to incorporate the dynamic, neo-additive capacity
parking choice model within an activity-based transportation model which the
authors recently developed for the UB north campus. This will allow for
accurate modeling of parking behavior and will yield a method for accurately
quantifying the additional environmental cost of the parking search process, in
terms of wasted fuel consumption and increased emissions.
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