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INTRODUCTION 
 

Steel plate shear walls were introduced into US codes as “Special Plate Shear Walls” 

(SPSW) in the 2005 edition of the AISC Seismic Provisions for Structural Steel 

Buildings (AISC 2005), also referred to as AISC 341; the provisions were derived from 

those in Canadian Standards Association (CSA) standard CAN/CSA-S16-01 (CSA 2001), 

Limit States Design of Steel Structures. Steel plate shear wall provisions originally 

appeared in the 1994 edition of Canadian standard S16 as a non-mandatory appendix. 

 

Since this introduction, the system’s use in the US and elsewhere, as well as design 

studies, has led to a refinement of several aspects of the design requirements, which are 

being considered for the 2010 AISC editions. Simultaneously, AISC 341 is being revised 

to clarify the desired behavior and basis of design for each system. These developments 

have resulted in the following changes for SPSW: explicit definition of the capacity-

design mechanism; identification of expected regions of inelastic strain; simplification of 

the calculation of web-tension angle; clarification of strong-column/weak-beam design 

procedures; and inclusion of methodologies for perforated web plates and walls with 

reinforced corner cut-outs. Additionally, changes to AISC 341 that would permit design 

of columns considering expected forces below those corresponding to the sum of all 

member capacities are being considered. This paper presents some of the anticipated 

changes to the SPSW provisions in the context of the broader changes to AISC 341. 

 

Since their original introduction into CSA standard S16, steel plate shear wall design 

provisions have evolved as new research into their behavior has become available and 

field experience has been gained. In the upcoming 2009 edition of the standard, changes 

to the provisions are expected to be largely consistent with those being considered for 

incorporation into the new AISC seismic provisions, including such issues as improved 

capacity design guidance and the introduction of a means of design for steel plate shear 

walls with perforated infill plates. Some of the anticipated changes to S16 are also 

discussed below. 
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UPCOMING CHANGES TO AISC 341 
 

OVERARCHING CHANGES 

 

With the wider use of the SPSW system, several aspects of the design methodology have 

been identified as being in need of clarification, and corresponding changes are under 

review. Additionally, research into a number of variations on the SPSW system has 

provided useful tools for designers; these variations are being discussed for inclusion in 

AISC 341. Most noticeably, AISC is considering a radical reorganization of the seismic 

provisions to more clearly define the expected behavior of each system and each of the 

system components. 

 

It should be noted that all changes discussed below are proposals under review by the 

Task Committee on the Seismic Provisions; they have not been approved and cannot be 

considered planned changes. The process for updating the provisions also requires both 

public review and approval by the AISC Committee on Specifications. 

 

With the proposed change in organization, requirements for each system are organized as 

follows: 

1. Scope 

2. Basis of Design 

3. Analysis 

4. Ductile Elements 

5. System requirements 

6. Members 

7. Connections 

 

SECTION F5.1 TO F5.7 

 

The reorganized requirements for SPSW are discussed below, following the section 

format described above. Note that, per the proposed revised structure of AISC 341, the 

design of SPSW would be addressed in Section F5. 

 

1. Section F5.1 – Scope: The scope provision simply defines that the Section applies 

to a specific seismic force resisting system. Here the proposed F5.1 states that 

Section F5 applies to the design of SPSW. 

2. Section F5.2 – Basis of Design: This section identifies any special testing or 

analysis required for the seismic force resisting system type, or if neither is 

required. It also defines the expected inelastic behavior of the system. Here the 

proposed F5.2 states that analysis per Section F5.3 is required, and that webs are 

expected to yield in tension and that beams are expected to form plastic hinges at 

each end. This description of expected behavior is essentially the same as in AISC 

341-05.  

3. Section F5.3 – Analysis: This section defines special analyses required for the 

seismic force resisting system type, typically a plastic mechanism analysis to 

establish forces at the limit of the lateral resistance. Here the proposed F5.3 
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requires that beam and column axial and flexural forces are to be determined from 

a plastic mechanism analysis in which all webs are at their expected tension 

strength at the diagonal angle established from frame properties, and the beams 

have plastic hinges formed at each end. The requirement to consider web-plate 

yielding was included in AISC 341-05, but was not presented as a plastic-

mechanism analysis. 

4. Section F5.4 – Ductile Elements: This section identifies areas of members and 

welded joints where inelastic strain is expected. In such areas, special provisions 

apply: limitations on attachments, notch toughness, etc. Here the proposed F5.4 

identifies the webs and the beams as the ductile elements, with the area of the 

beam near the column as the expected plastic hinge location. The concept of 

ductile elements was implicit in AISC 341-05, and protected zones within such 

members were defined; however, no such zones were identified for SPSW. 

5. Section F5.5 – System requirements: This section identifies any system 

limitations and requirements, such as out-of-plane bracing of connections or 

members. Here the proposed F5.5 limits the panel aspect ratio, provides for a 

required column flexural stiffness, prescribes lateral bracing of beams, and 

presents requirements for openings in webs. Each of these requirements appeared 

in AISC 341-05. In addition, the proposed F5.5 provides a complementary beam 

stiffness requirement, which would be new to AISC 341. The strong-column-

weak-beam proportioning rule from AISC 341-05 would also appear here; 

however, this requirement might be superseded by the analysis requirements of 

F5.3. 

6. Section F5.6 – Members: This section includes various member requirements: 

limits on element width-to-thickness ratios, required strength of members, etc. 

Here the proposed F5.6 includes both of those, identifying both beams and 

columns as “highly ductile members,” for which low limits on width-to-thickness 

ratios apply so that significant inelastic rotation can be achieved. Additionally, the 

required strength of beams and columns would also appear here; however, this 

requirement might be superseded by the analysis requirements of F5.3. Finally, 

the proposed section also defines the nominal strength of the web member, as 

AISC 360, the main Specification for Structural Steel Buildings, does not include 

such a member. 

7. Section F5.7 – Connections: This section includes requirements for the design of 

connections. In the proposed F5.7, the required strength of web connections is 

defined based on its expected yield. Additionally, the requirement that the beam-

to-column connection comply with Ordinary Moment Frame requirements is 

included. Both of these requirements appeared in AISC 341-05. 

 

In addition to the seven subsections that follow the typical pattern, there is a section F5.8 

in the proposed draft, which includes two variations on the SPSW system. F5.8a defines a 

SPSW with a regular array of circular openings. F5.8b addresses the design of quarter-

circle corner cut-outs in the SPSW. 
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SECTION F5.8a 

 

The yield stress for hot-rolled steel material typically available in North America results 

in panel thicknesses that might be less than the minimum panel thickness available from 

steel producers. In such cases, use of the minimum available thickness may result in large 

panel force over-strength. Attempts at alleviating this problem were recently addressed 

by the use of light-gauge, cold-formed steel panels, in a new application by Berman and 

Bruneau (2003a, 2005). Another approach consists of reducing the strength of the web by 

adding a regular grid of perforations across the web (Vian and Bruneau 2005). This 

solution simultaneously helps address the practical concern of utility placement across 

special plate shear walls, which has been in some cases an impediment to more 

widespread acceptance of the SPSW structural system. In a regular SPSW, the infill panel 

which occupies an entire frame bay between adjacent Horizontal Boundary Elements 

(HBEs) and Vertical Boundary Elements (VBEs) is a protected element, and utilities that 

may have otherwise passed through at that location must either be diverted to another 

bay, or pass through an opening surrounded by HBEs and VBEs. This either results in 

additional materials (for the extra stiffening) or in labor (for the re-location of ductwork 

in a retrofit, for example). 

 

Special Perforated Plate Shear Walls are a special case of SPSWs in which a special 

panel perforations layout is used to allow utilities to pass-through and which may be used 

to reduce the strength and stiffness of a solid panel wall to levels required in a design 

when a thinner plate is unavailable. This concept has been analytically and 

experimentally proven to be effective and to remain ductile up to the drift demands 

corresponding to severe earthquakes (Vian and Bruneau 2005, Purba and Bruneau 2006). 

A typical hole layout for this system is shown in Fig. 1. 

 

 

Sdiag θθθθ 

“Typical” 
diagonal strip  

Figure 1: Schematic Detail of Special Perforated Plate Shear Wall 
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The introduction of an array of circular holes offers numerous design and construction 

advantages: 

• The angle alpha defining the angle of tension stress can be known directly, 

controlled, and fixed so that the typical design iterations do not necessitate 

recalculation of the angle nor adjustments to the model; 

• A thicker web plate may be employed, permitting larger welds in the attachment 

to the frame, as well as easier fabrication and placement; and 

• Conduit and small-to-medium pipes can cross the SPSW plane without onerous 

local boundary elements. 

 

Coefficients for calculating the effective thickness to use in strength and stiffness 

calculations are presented, based on the work of Bruneau and Vian (2005) and Bruneau 

and Purba (2006). 

 

SECTION F5.8b 

 

It is also possible to allow utility passage through a reinforced cutout designed to transmit 

the web forces to the boundary frame. While providing utility access, this proposed 

system provides strength and stiffness similar to a solid panel SPSW system. The 

openings are located immediately adjacent to the column in each of the top corners of the 

panel, a location where large utilities are often located. Cut-out radii as large as 500 mm 

for a ½ scale specimen having a 2000 mm c/c distance between HBEs has been 

successfully verified experimentally and analytically by Vian and Bruneau (2005) and 

Purba and Bruneau (2006). 

 

Forces acting in the reinforcing arch are a combination of effects due to arching action 

under tension forces due to web yielding, and thrusting action due to change of angle at 

the corner of the SPSW (Figs. 2 and 3). The latter is used to calculate the required 

maximum thickness of the “opening” corner arch (top left side of Fig. 2, with no web 

stresses assumed to be acting on it). The arch plate width is not a parameter that enters 

the solution of the interaction equation in that calculation, and it is instead conservatively 

obtained by considering the strength required to resist the axial component of force in the 

arch due to the panel forces at the closing corner (top right side of Fig. 2). Since the 

components of arch forces due to panel forces are opposing those due to frame corner 

opening (Fig. 3), the actual forces acting in the arch plate will be smaller than calculated 

by considering the components individually as done above for design. 

 

Note that when the fish plate is added to the reinforcement arch to facilitate infill panel 

attachment to the arch, it results in a stiffer arch section that could (due to compatibility 

of frame corner deformation) partly yield at large drifts. However, Vian and Bruneau 

(2005) and Purba and Bruneau (2006) showed that the thickness of the flat plate selected 

per the above procedure is robust enough to withstand the loads alone, and that the 

presence of the stiffer and stronger T-section is not detrimental to the system 

performance. 
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Nonlinear static pushover analysis is a tool that can be used to confirm that the selected 

reinforcement section will not produce an undesirable “knee-brace effect” or precipitate 

column yielding or beam yielding outside of the RBS region. 
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FIGURE 2: Arch End Reactions Due to Frame Deformations, and Infill Panel Forces on 

Arches Due to Tension Field Action on Reinforced Cut-Out Corner 
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FIGURE 3: Deformed Configurations and Forces Acting on Right Arch 
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IMPROVED CAPACITY DESIGN GUIDANCE FOR VBES 

 

The AISC 341 commentary states that, “per capacity design principles, all edge boundary 

elements (HBE and VBE) shall be designed to resist the maximum forces developed by 

the tension field action of the webs fully yielding.” A number of simplified approaches 

are proposed in the existing commentary to obtain the axial forces, shears, and moments 

that develop in the boundary elements of the SPSW as a result of the response of the 

system to the overall overturning and shear, and tension field action in the webs. 

However, recent work by Berman and Bruneau (2008) demonstrated that some of these 

methods give incorrect results. 

 

A proposed revised commentary will not include the Combined linear elastic computer 

programs and capacity design method. While this method is capable of producing VBE 

axial forces that are reasonable relative to pushover results depending on the value of 

overstrength factor used, it does not provide accurate local bending moments in the VBEs 

resulting from both web plate yielding and frame action corresponding to the externally 

applied loads that caused the web plates to yield. The proposed revised commentary will 

retain the Indirect capacity design approach (first introduced in CSA-S16-01 (CSA, 

2001)), but will clarify that the method. While being capable of producing reasonable 

results for approximating VBE capacity design loads, it can be unconservative in some 

circumstances – guidance will be provided to account for the possibility of significant 

strength of the surrounding frame and consideration of the full collapse mechanism 

(Berman and Bruneau 2003b) when determining the amplification factor.  

A new Combined Plastic and Linear Analysis is proposed. This procedure has been 

shown to give accurate VBE results compared to push-over analysis (Berman and 

Bruneau 2008). In this approach, the required capacity of VBEs is found from free body 

diagrams that account for web plate yielding, moments from plastic hinging of HBEs, 

axial forces from HBEs, applied lateral seismic loads found from consideration of the 

plastic collapse mechanism, and base reactions for those lateral seismic loads. 

 

UPCOMING CHANGES TO CSA STANDARD S16 
 

As with the AISC Provisions, the changes described in this paper are proposals that are 

under discussion by the committee and must yet undergo a full public review before they 

can be adopted. 

 

The structure and organization of CSA standard S16 will remain the same in the next 

edition, but will include much of the clarification presented above for the AISC seismic 

design of SPSW. In particular, there will be improved transparency of and adherence to 

capacity design principles and an explicit establishment of protected zones. Design 

provisions for shear walls with plate perforations (including those with corner cut-outs) 

will also be consistent with the proposed AISC Provisions described above. In addition, 

the moment-resisting frame, acting without the infill plate, will be required to resist a 
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minimum of 25% of the design shear force at each story to ensure that the implied 

benefits of the redundancy of the system are realized. 

 

The strip model (Thorburn et al., 1983) is a well-established method of analysis for steel 

plate shear walls wherein the tension field in the infill plate is idealized as a series of 

tension strips. However, one its drawbacks is that the angle of the tension strips needs to 

be recalculated, and the model revised, as the design of the frame members evolves, 

making the method somewhat cumbersome for larger structures. Shishkin et al. (2005) 

have established through a detailed analytical investigation that the overall behavior of 

steel plate shear walls is insensitive to the angle of inclination assumed in the model. As 

such, for aspect ratios within the range 0.6<L/h<2.5, where L is the center-to-center 

column spacing and h is the story height, a constant strip angle from the vertical of 

40 degrees may be used. Shishkin et al. (2005) have shown that this simplification gives 

an accurate ultimate capacity in a pushover analysis and a slightly conservative elastic 

stiffness. 

 

In order to provide effective anchorage to the infill plate tension field, the current edition 

of S16 requires that the column flexibility parameter, ωh , be limited to a maximum value 

of 2.5. This parameter is defined as follows: 

 4

c
h

2LI

w
0.7h ω =  (1) 

where w is the infill plate thickness and Ic is the moment of inertia of the columns. The 

limit on ωh indirectly imposes a minimum column moment of inertia of: 

  
L

wh
0.00307I

4

c =  (2) 

Although a stiffness limit for the top beam exists in the current edition of S16 with the 

same intent, it requires an iterative solution and in many cases simply cannot be met. 

Dastfan and Driver (2008) have developed an equation to address the stiffness 

requirements of the top panel (and the panel at the base of the wall if the tension field is 

anchored by a girder), where the assumptions behind ωh do not apply, in a manner 

consistent with the method used for columns. Due to the combined effects of the top 

beam and the adjacent column behaviors on the plate tension field uniformity in the top 

panel, the moment of inertia of both members must be considered. For consistency, the 

requirement is formulated in terms of a boundary member flexibility parameter, ωL : 
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where Ib is the moment of inertia of the beam anchoring the extreme panel and all other 

symbols have been defined previously. The upper limit on ωL is 2.5 in the top panel and 

2.0 in the panel at the base of the wall. 

 

The existing provisions for steel plate shear walls with “limited ductility”—with a 

ductility force reduction factor, Rd , of 2.0 (as compared to 5.0 for the “ductile” wall)—

will remain in the standard, but with nominal capacity design requirements added. This 

system is limited to structures not exceeding 60 m in height. 
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CONCLUSIONS 
 

This paper has presented a number of proposed changes for the AISC and CSA seismic 

design of steel plate shear walls. These enhancements are expected to increase the range 

of applicability of this structural system. 
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